.

Структура сходящихся последовательностей

Язык: русский
Формат: реферат
Тип документа: Word Doc
88 492
Скачать документ

Последовательность, у которой существует предел, называется сходящейся.
Последовательность не являющаяся сходящейся называется расходящейся.

Определение: Последовательность {xn} называется сходящейся, если
существует такое число а, что последовательность {xn-а} является
бесконечно малой. При этом число а называется пределом
последовательности {xn}.

В соответствии с этим определением всякая бесконечно малая
последовательность является сходящейся и имеет своим пределом число
ноль.

Можно, также, дать еще одно определение сходящейся последовательности:
Последовательность {xn} называется сходящейся, если существует такое
число а, что для любого положительного числа ( можно указать номер N
такой, что при n(N все элементы xn этой последовательности удовлетворяют
неравенству:

|xn-a|0. Пусть N – номер, соответствующий этому (,
начиная с которого выполняется неравенство:

, и эта последовательность ограничена. Лемма доказана.

ТЕОРЕМА: Частное двух сходящихся последовательностей {xn} и {yn} при
условии, что предел {yn} отличен от ноля, есть сходящаяся
последовательность, предел которой равен частному пределов
последовательностей {xn} и {yn}.

бесконечно малая. В самом деле, так как xn=а+(n, yn=b+(n, то

.

бесконечно малая. Теорема доказана.

Итак, теперь можно сказать, что арифметические операции над сходящимися
последовательностями приводят к таким же арифметическим операциям над их
пределами.

ТЕОРЕМА: Если элементы сходящейся последовательности {xn}, начиная с
некоторого номера, удовлетворяют неравентству xn(b (xn(b), то и предел а
этой последовательности удовлетворяет неравенству а(b (a(b).

Доказательство: Пусть все элементы xn, по крайней мере начиная с
некоторого номера, удовлетворяют неравенству xn(b. Предположим, что а0 можно указать номера N1 и N2 такие, что при n(N1
|xn-a|0. Согласно предположению в рассматриваемой
последовательности существуют члены, меньше чем (. Пусть n – наименьший
номер, для которого lnm; ln0),

s1, s 2, s 3, … , s m, … (s1>0, sm+1>sm, m=1, 2, 3, …)

обладают тем свойством, что

.

Тогда существует бесконечно много номеров n, для которых одновременно
выполняются неравенства

ln>ln+1, ln>ln+2, ln>ln+3, …

lnsn>ln-1sn-1, lnsn>ln-2sn-2, … lnsn>l1s1,

РЕШЕНИЕ:

Будем называть lm «выступающим» членом последовательности, если lm
больше всех последующих членов. Согласно предположению в первой
последовательности содержится бесконечно много выступающих членов; пусть
это будут:

Каждый невыступающий член lv заключается (для v>n1) между двумя
последовательными выступающими членами, скажем nr-1l1. Тогда существует такой номер n, n ( 1, что
одновременно выполняются все неравенства

.

Если А((, то также n((.

РЕШЕНИЕ:

Пусть

l1+l2+l3+…+lm=Lm, m=1, 2, 3, …; L0=0.

Так как L1-AA>0. Тогда существует такой номер n, n ( 1, что
одновременно выполняются все неравенства

.

Если А(0, то также n(0.

РЕШЕНИЕ:

Положим

l1+l2+l3+…+lm=Lm, m=1, 2, 3, …; L0=0.

. Последовательность

L0-0, L1-A, L2-2A, L3-3A, …, Lm-mA, …

стремится к -(. Пусть ее наибольший член будет Ln-nA. Тогда интересующие
нас неравенства будут выполняться для этого номера n.

В последовательности L0, L1, …, Lm, … содержится бесконечно много
членов, превышающих все предыдущие. Пусть Ls будет один из них. Тогда
числа:

все положительны: коль скоро А меньше наименьшего из них,
соответствующий А номер n больше или равен s. Точки (n, Ln) должны быть
обтянуты теперь бесконечным выпуклым сверху полигоном.

PAGE 1

Удмуртский государственный университет

PAGE

PAGE 7

Нашли опечатку? Выделите и нажмите CTRL+Enter

Похожие документы
Обсуждение

Ответить

Курсовые, Дипломы, Рефераты на заказ в кратчайшие сроки
Заказать реферат!
UkrReferat.com. Всі права захищені. 2000-2020