.

Моделирование SH-волны

Язык: русский
Формат: курсова
Тип документа: Word Doc
0 1159
Скачать документ

Кафедра общей и прикладной геофизики

Курсовая работа
по сейсморазведке
на тему:
Моделирование SH-волны

Выполнили: студенты группы 3151
Кузнецова А.О., Колбенко А.В., Климов Ю.С.
Проверил: доц. Сердобольский Л.А.

Дубна, 2005

СОДЕРЖАНИЕ

ВВЕДЕНИЕ
I. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
1. ОПИСАНИЕ ВОЛН И СОЗДАВАЕМЫХ ИМИ НА ГРАНИЦЕ НАПРЯЖЕНИЙ
2. ГРАНИЧНЫЕ УСЛОВИЯ И СПЕКТРАЛЬНЫЕ КОЭФФИЦИЕНТЫ РАССЕИВАНИЯ
3. ВОЛНЫ РАССЕИВАНИЯ ПРИ ПАДЕНИИ SH-ВОЛНЫ НА КРОВЛЮ НИЗКОСКОРОСТНОЙ СРЕДЫ
4. ВОЛНЫ РАССЕИВАНИЯ ПРИ ПАДЕНИИ SH-ВОЛНЫ НА КРОВЛЮ ВЫСОКОСКОРОСТНОЙ СРЕДЫ
II. РАСЧЁТНАЯ ЧАСТЬ
1. ПАДЕНИЕ SH-ВОЛНЫ НА КРОВЛЮ НИЗКОСКОРОСТНОЙ СРЕДЫ
2. ПАДЕНИЕ SH-ВОЛНЫ НА КРОВЛЮ ВЫСОКОСКОРОСТНОЙ СРЕДЫ
СПИСОК ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Сейсморазведка является одним из важнейших видов геофизической разведки земных недр. Она включает в себя комплекс методов исследований геологического строения земной коры, основанных на изучении особенностей распространения в ней искусственно возбуждённых упругих волн. Вызванные взрывом или другим способом упругие волны, распространяясь во всех направлениях от источника колебания, проникают в толщу земной коры на большие глубины. В процессе распространения в земной коре упругие волны претерпевают процессы отражения и преломления. Это приводит к тому, что часть сейсмической энергии возвращается к поверхности Земли, где вызывает дополнительные сравнительно слабые колебания. Эти колебания регистрируются специальной аппаратурой. Полученные записи подвергаются глубокой обработке. Анализируя и интерпретируя полученные после обработки результаты, квалифицированный специалист-геофизик может определить глубину залегания, форму и свойства тех слоёв, на поверхности которых произошло отражение или преломление упругих волн.
Упругие волны делятся на объёмные и поверхностные. Традиционно в сейсморазведке наибольшее применение нашли объёмные волны: продольные (P-волны) и поперечные (S-волны). Скорости Vp всегда больше, чем Vs.
В данной курсовой работе рассматривается распространение SH-волны в различных геологических условиях среды.

I. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Пусть верхняя среда имеет скорость поперечной волны , плотность и модуль сдвига , а нижняя среда характеризуется параметрами . Напомним, что , и для сокращения письма опустим индекс поперечной волны (S) и будем обозначать , не забывая, конечно, о том, что в этом разделе речь идет о поперечной горизонтально-поляризованной волне, падающей на плоскую, горизонтальную, разрывно-резкую границу раздела.

1. ОПИСАНИЕ ВОЛН И СОЗДАВАЕМЫХ ИМИ НА ГРАНИЦЕ НАПРЯЖЕНИЙ

Пусть первичная плоская SH-волна падает на границу (z = 0) под углом α и имеет фронт, параллельный оси Oy. Она описывается вектором смещения , также ориентированным вдоль Оу, но не зависящим от у:

.

Как отмечалось, SH-волна в выбранных условиях порождает на границе только монотипные (также SH) вторичные волны. Отраженная SH-волна распространяется вверх, в противоположном по отношению к первичной волне направлении. Поэтому в ее волновом аргументе переменная z отрицательна:

Проходящая SH-волна распространяется в том же направлении, что и падающая волна (вниз), но во второй нижней среде со скоростью и под углом :

.

Закон Снеллиуса для SH-волн имеет вид:

Горизонтальное вдоль Оу смещение SH-волн создает на границе лишь касательное напряжение:

в соответствии с законом Гука, где – сдвиговая деформация в плоскости zOy:

.

Но SH-волна несет смещение, ориентированное вдоль Оу, и для нее .Кроме того, фронты всех волн параллельны той же оси Оу, и поэтому .

Следовательно, для касательного напряжения можно записать:

Напряжение, создаваемое на границе падающей волной, описывается так:

Отраженная волна создает на границе касательное напряжение:

Наконец, проходящая волна создает напряжение:

Поскольку , для унификации обозначений будем всегда использовать угол .

2. ГРАНИЧНЫЕ УСЛОВИЯ И СПЕКТРАЛЬНЫЕ КОЭФФИЦИЕНТЫ РАССЕИВАНИЯ

Из общих трех граничных условий для компонент векторов смещения и стольких же граничных условий для компонент напряжений в условиях рассматриваемой в данном разделе задачи актуальны лишь два граничных условия: равенство суммарных у-компонент смещений (кинематическое) и равенство суммарных касательных напряжений (динамическое).
На границе, при z = 0, сумма смещений падающей и отраженной волн должна быть равна смещению проходящей волны:

При подстановке z=0 волновые аргументы всех трех волн равны:

то есть , так как t и x – общие время и координата точки границы, а множители при х равны в соответствии с законом Снеллиуса. Поэтому первое граничное условие дает уравнение:

или в спектрах:

.
Обратим внимание на отсутствие в первом уравнении углов падения, отражения и прохождения. Это значит, что уравнение должно быть справедливом при любом угле падения 0 ≤ α ≤ π⁄2.
Динамическое граничное условие требует, чтобы на границе, при z=0, сумма напряжений, создаваемых падающей и отраженной волнами, равнялось напряжению, создаваемому проходящей волной:

.

Используя определения касательных напряжений, получим, подставляя z = 0, второе уравнение:

,

или в спектральной форме после сокращения на jω:

.

Вместе уравнения для смещений и напряжений создают систему из двух уравнений, в которые входят спектры трех волн – отраженной, проходящей и, породившей их, первичной (падающей):

Очевидно, эта система позволяет определить лишь отношения спектров вторичных волн к спектру первичной волны. Так вводятся спектральные коэффициенты рассеяния:

спектральный коэффициент отражения ,
спектральный коэффициент прохождения .

Как в любой линейной системе, чья спектральная характеристика определена отношением спектра сигнала на выходе к спектру входного сигнала, и в данном случае спектры “выходных сигналов” – отраженной волны (“выход 1”) и проходящей волны (“выход 2”) соотносятся со спектром “входного сигнала” – падающей волны. Поделив уравнения на и введя А и В, запишем:

Решая любым способом эту простую систему уравнений, получим определения спектральных коэффициентов рассеивания:

.

Обратим внимание на очень удобную особенность – при любом угле падения коэффициент прохождения В на единицу больше коэффициента отражения А. Произведение скорости на плотность в сейсморазведке называют волновым сопротивлением (или акустической жесткостью): Используя определение спектральных коэффициентов рассеивания, можно записать для спектров вторичных волн:

.

Так как В = 1 + А, то при любом угле падения спектры волн связаны соотношением:

.

В том же соотношении находятся и сами сигналы – первичная и вторичные волны:

.

Видно, что всегда проходящая волна представляет собой сумму волн падающей и отраженной. Заметим, что для SH-волн так и должно быть для соблюдения неизменной сплошности всей среды и неразрывности контакта пород на границе.
При нормальном (по перпендикуляру к границе) падении и коэффициента рассеивания равны:

.

Очевидно, что условием возникновения отраженной волны служит неравенство волновых сопротивлений, контактирующих на границе сред вне зависимости от того, чем это неравенство вызывается – различием скоростей или различием плотностей. Отражающей является граница с различными волновыми сопротивлениями. Могут быть “скоростные” границы, на которых изменяются скорости, могут существовать “плотностные” границы, на которых меняются плотности, и границы обоих типов являются отражающими. Наоборот, граница, на которой и , но , не является отражающей.
В большинстве случаев скорости и плотности пород изменяются согласованно – более плотные породы являются и более всокоскоростными и наоборот. Исключения из этого правила довольно редки. Наиболее яркий пример – граница между залегающими над соляным куполом известняками и каменной солью. Скорость волны в известняках может быть меньше скорости в соли, тогда как плотность соли меньше плотности известняка.
В зависимости от знака неравенства выделяют случаи тогда верхняя среда имеет большее волновое сопротивление, чем нижнее, и обратный случай, когда нижняя среда характеризуется большим волновым сопротивлением: . В геологическом разрезе из-за статического давление вышележащих пород волновое сопротивление обычно растете с увеличением глубины залегания. Уменьшению его на границе обычно соответствуют границы перерыва в осадконакоплении (границы разрыва).
Проведем последовательный анализ поведения коэффициентов рассеивания А и В вторичных волн при изменении угле падения первичной SH-волны: 0≤ α ≤ π⁄2. Угол α = 0 соответствует нормальному падению волны, угол α = π⁄2 является теоретически возможным пределом изменения угла падения, при котором волна скользит вдоль границы.

3. ВОЛНЫ РАССЕИВАНИЯ ПРИ ПАДЕНИИ SH-ВОЛНЫ НА КРОВЛЮ НИЗКОСКОРОСТНОЙ СРЕДЫ

Верхняя среда более плотная и имеет большую скорость распространения волны, чем нижняя:

.

Из закона Снеллиуса следует, что в том же соотношении находятся углы падения и отражения и угол прохождения :

.

Поэтому при изменении угла падения от 0 до теоретически возможного предела угол прохождения этого предела не достигает: всегда 1) амплитуду вторичной волны по сравнению с амплитудой первичной, падающей волны.
Возможно еще одно воздействие коэффициента отражения А на отраженную волну. Если А > 0, то отраженная волна имеет тот же знак (направление) смещения, что и первичная волна. Если же А 0.

Рис.8

Тогда при А 0, а при α = А1. При А = 0, В = 1, а при α > А 0, и существует угол , при котором А = 0 и , В = 1 и , – отраженной волны нет, есть только проходящая вторичная волна с амплитудой, равной амплитуде падающей волны. Синус этого угла определен ранее, но, так как , формулу для удобнее записать, умножив числитель и знаменатель подкоренного выражения на – 1:

.

При дальнейшем увеличении угла падения, когда , коэффициент отражения А стремительно возрастает от 0 при до 1, при одновременно и также быстро В растет от 1 до 2. Однако, более существенные изменения коэффициентов А и В и вторичных волн – отраженной и проходящей – происходят, когда угол падения становится больше критического. Если (напомним, ), в соответствии с законом Снеллиуса:

и

синус угле прохождения при закритическом падении становится больше единицы (?!). Это не может быть в области действительных тригонометрических функций. Определим косинус угле прохождения по обычной формуле:

, так как .

Синусу, большему 1, соответствует чисто мнимый косинус.
Встретившись с этой неожиданной трансформацией косинуса, мы, из осторожности, записали оба возможных знака (±) корня. Установим, какой из них имеет физический смысл. Для этого вспомним описание проходящей волны (в волновой аргумент которой и входит ) и ее спектра:

Подставим в последнее определение

:

Наличие мнимой единицы в определении косинуса выводит зависимость от z из функции запаздывания и превращает ее в амплитудный множитель . Если определить , то с ростом z (то есть, при удалении от границы и от предполагаемого источника колебаний) амплитуда гармоники частоты ω неограниченно возрастает:

при z → ∞ .

Физически это абсолютно невозможно, поэтому из двух знаков мнимого косинуса следует выбрать минус: . Тогда амплитуда вторичной волны, определяемая множителем , стремится к нулю при удалении от границы (z → ∞).
Однако, спектр импульсного сигнала определен на всем бесконечном интервале частот: – ∞ ≤ ω ≤ ∞ и в волновом импульсе присутствуют как гармоники с положительными частотами, так и гармоники с ω 0, sgn (ω) = + 1 и – функция, убывающая с ростом z, если же ω ) приводит к перемене знака действительной части и к соответствующему инвертированию знака смещения первичной волны в суммарном отраженном сигнале.
В пределе, при : ReA ; ImA и .
С увеличением угла падения при доля падающей волны с инвертированным знаком смещения в суммарной волне растет, а доля Гильберт-трансформанты уменьшается в пределе, при α = 90°, до 0.
При этом отраженный сигнал повторяет по форме и амплитуде колебаний падающую волну с инвертированным знаком смещений. Напомним, что такой же предел был выявлен и в случае (см. раздел 8.3), что вполне естественно.
Анализ закритических изменений спектрального коэффициента прохождения В и вызванных ими трансформаций неоднородных плоских волн фактически не нужен, так как имеется связь между коэффициентами рассеивания SH-волны: В = 1 + А, справедливая при любых углах падения.
Для комплексных коэффициентов рассеивания А = ReA + jImA; B = ReB + jImB имеем:

ReB + jImB = 1 + ReA + jImA.

Видно, что А и В имеют действительные части, различающиеся на единицу, и равные мнимые части:

ReB = 1 + ReA; ImB = ImA.

Напомним, что связь между А и В получена из первого граничного условия (для упругих смещений):

.

В соответствии с ним, при любых соотношениях физических свойств контактирующих на границе сред и при любом угле падения первичной SH-волны при z = 0 проходящая волна представляет собой простую сумму падающей волны u (τ) и отраженной волны .
Поэтому все трансформации отраженной волны в закритической зоне входят составной частью в изменения проходящей волны.
Вне зависимости от угла падения в этой волне всегда присутствует “постоянная” составляющая – первичная, падающая на границу волна, по предположению, не меняющаяся с изменением угла падения.
В заключение приведем цифровые оценки особых углов падения для границы раздела сред со следующими упругими параметрами:

.

Это – довольно “сильная” отражающая граница.
Ей может соответствовать, например, граница между обводненной верхней средой (где скорость S-волны резко уменьшена) и “сухим” нижним полупространством.
При нормальном падении (α = 0) SH-волны коэффициенты рассеивания равны:

.

Отраженная волна имеет амплитуду, в четыре раза меньшую амплитуды первичной волны, и инвертирована по знаку смещения. Проходящая волна ослаблена по амплитуде на четверть в сравнении с падающей волной. Для выбранных параметров сред определим отношения волновых сопротивлений ≈1,667 и скоростей ≈1,414 ( ≈0,707). Используя их, найдем особые углы падения первичной волны:
угол , при котором А = 0, В = 1 и = 0,

= arcsin ≈38°,7;

критический угол , при котором А = 1, В = 2 и

:
.

угол , при котором ReA = 0, ImA = ImB = ReB = 1 и

, :
≈49°,4.

Как видно из этих оценок, зона наибыстрейшего и наибольшего изменения спектральных коэффициентов рассеивания (СКР) и вторичных волн весьма узка: ≈10,7. В интервале коэффициенты А и В возрастают на единицу: А от 0 до 1, В от 1 до 2. Затем, как только угол падения превысит критический, коэффициенты становятся комплексными. В интервале действительная часть А спадает от 1 до 0 (ReB от 2 до 1), а мнимая часть А и В возрастает от 0 до 1.
Вне зоны ( ) коэффициенты рассеивания ведут себя более спокойно. При изменении от 0 до отрицательный коэффициент отражения уменьшается (по модулю) от – 0,25 до 0. В ближней к источнику зоне, при , СКР изменяются незначительно. Соответственно, и вторичные волны в этой зоне изменяются мало.
С увеличением различия свойств контактирующих на границе сред все особые точки ( ) смещаются в сторону меньших углов падения, а интервалы между ними уменьшаются. Наоборот, для границ раздела сред с близкими упругими константами критический угол большой и углы отдалены от него.

Рис.10

Описание изменений СКР SH-волны иллюстрирует (рис.10), на котором построены графики и импульсоиды первичной волны и ее Гильберт-трансформанты, а также импульсоиды суммарных вторичных волн для различных углов падения. Так как ReB = ReA + 1, график снабжен второй осью ординат для со смещенной на 1 шкалой. График одновременно является и графиком .
Импульсоиды вторичных волн соответствуют углам падения, отмеченным на шкале оси абсцисс стрелками.
В заключение анализа отметим, что угол падения α определяет удаление х точки приема Р от точки возбуждения 0 (рис.11). Тангенс этого угла равен отношению половины удаления х/2 к эхо-глубине границы h: . Поэтому малые углы падения соответствуют ближней к источнику зоне, а большие – дальней.

Рис.11

Приведем оценки x/h, соответствующие особым углам для выбранных ранее параметров сред:

при ≈38°,7 ≈1,6;
при ;
при ≈49,4 ≈2,33.

Добавим еще оценку границы ближней зоны:

при ≈12,8 ≈0,46.

Таким образом, область наибольшей стабильности отраженной волны не превышает половины эхо-глубины границы. Наибольшие изменения этой волны начинаются на удалениях, в полтора раза превышающих глубину. В промежуточной зоне с ростом х изменения отраженной волны становятся все более существенными и заметными.

II. РАСЧЁТНАЯ ЧАСТЬ

1. ПАДЕНИЕ SH-ВОЛНЫ НА КРОВЛЮ НИЗКОСКОРОСТНОЙ СРЕДЫ

Зададим три случая параметров среды – укажем их в таблице:

Среда 1 Среда 2 Среда 3
V1, км/с 1,3 V1, км/с 2,0 V1, км/с 2,5
ρ1, г/см3 2,2 ρ1, г/см3 3,0 ρ1, г/см3 3,5
V2, км/с 1,2 V2, км/с 1,2 V2, км/с 1,2
ρ2, г/см3 2,1 ρ2, г/см3 2,1 ρ2, г/см3 2,1

Получим график спектрального коэффициента отражения A в зависимости от угла падения α1. В первом случае критический угол составляет α0 = 55˚, во втором – близок к α0 = 70˚, третий случай – α0 = 75˚.

Анализируя полученные графики, видим, что по мере увеличения различий физических свойств между средами критический угол α0 увеличивается, стремясь к 45˚ для практически однородных сред.
Покажем изменение амплитуды отражённого сигнала, в зависимости от спектрального коэффициента отражения для Среды 2. В качестве исходного сигнала возьмём импульс Берлаге, вычисляемый по формуле . Возьмём случай f0 = 40Гц:

2. ПАДЕНИЕ SH-ВОЛНЫ НА КРОВЛЮ ВЫСОКОСКОРОСТНОЙ СРЕДЫ

Зададим три случая параметров среды – укажем их в таблице:

Среда 1 Среда 2 Среда 3
V1, км/с 1,2 V1, км/с 1,2 V1, км/с 1,2
ρ1, г/см3 2,1 ρ1, г/см3 2,1 ρ1, г/см3 2,1
V2, км/с 1,3 V2, км/с 2,0 V2, км/с 2,5
ρ2, г/см3 2,2 ρ2, г/см3 3,0 ρ2, г/см3 3,5

Получим график спектрального коэффициента отражения A в зависимости от угла падения α1. В первом случае критический угол составляет α0 = 68˚, во втором – близок к α0 = 38˚, третий случай – α0 = 28˚.

Анализируя полученные графики, видим, что по мере увеличения различий физических свойств между средами критический угол α0 уменьшается.
Покажем изменение амплитуды отражённого сигнала, в зависимости от спектрального коэффициента отражения для Среды 2. В качестве исходного сигнала возьмём импульс Берлаге, вычисляемого по формуле . Возьмём случай f0 = 40Гц:

СПИСОК ЛИТЕРАТУРЫ

1. Бондарев В.И., 2000, Основы сейсморазведки. Екатеринбург: Изд-во УГГГА.
2. Сейсморазведка: Справочник геофизика, 1990 / Под ред. В.П. Номоконова. М.: Недра.
3. Гурвич И.И., Боганик Г.Н., 1980, Сейсморазведка. М.: Недра.

Нашли опечатку? Выделите и нажмите CTRL+Enter

Похожие документы
Обсуждение

Ответить

Курсовые, Дипломы, Рефераты на заказ в кратчайшие сроки
Заказать реферат!
UkrReferat.com. Всі права захищені. 2000-2020