.

Динамічне підпорогове дефектоутворення у вузьких напівпровідниках А…В… .(реферат)

Язык: украинский
Формат: реферат
Тип документа: Word Doc
0 1128
Скачать документ

Динамічне підпорогове дефектоутворення у вузькозонних

напівпровідниках АIIIВV

Є ціла низка експериментальних даних незворотної взаємодії лазерного
випромінювання з вузькозонними напівпровідниками АIIIВV [1-3]. Ці
результати наводять на думку, що в напівпровідниках при опроміненні
випромінюванням рубінового лазера виникають дефекти локального типу з
різними енергіями активації та відпалу. Ці дефекти мають n-тип
провідності.

Енергетична залежність для розподілу n-центрів у приповерхневому шарі
подана на рис.1 кривою 1 [1]. Ці n-центри зумовлені дефектами (крива 2,
рис. 1). Окрім того вони мають низьку рухливість, майже на порядок меншу
від вільних носіїв. При термообробці кількість носіїв у шарі
зменшується. Однак частина n-центрів для досить високих інтенсивностей
опромінення зберігає свою стійкість при T=4000C в InSb та при T=8000C в
InAs.

Слід зазначити, що концентрація оптично генерованих дефектів настільки
велика, що при середніх дозах іонної імплантації додаткове опромінення
імпульсами рубінового лазера призводить до збільшення кількості
дефектів (крива 3, рис. 1), тоді як опромінення імпульсами лазера на СО2
призводить до відпалу дефектів (крива 4 рис. 1) та до активації
впровадженої домішки [1].

При цьому концентраційний профіль залежить від кристалографічної
орієнтації [2; 3] (рис. 2). Це зумовлено тим, що кристали InSb мають
значний процент ковалентних зв’язків, що й призводить до анізотропії
дефектоутворення.

У спектрах оберненорозсіяних іонів у режимі каналювання зареєстрована
генерація дефектів решітки в приповерхневому шарі [1-3] кристалів InSb
під дією випромінювання рубінового лазера з густиною енергії в імпульсі
I0=0,018( (0,078 Дж(см-2 до рівня, який реєструється методикою. Відносна
зміна дефектності (D зображена кривою 2 на рис.1. Співставляючи дані для
(D=f(I0) та для nS=f2(I0) (де nS – шарова концентрація), легко бачити,
що генерація n-центрів зумовлена дефектоутворенням під дією

в шарі досягається мінімальний рівень дефектності, що реєструється
методикою.

На рис. 3 наведено динаміку поведінки дефектів після опромінення
імпульсами рубінового лазера різної інтенсивності.

Ці ефекти пояснюються тим, що при взаємодії лазерного випромінювання з
h((Eg відбувається інтенсивне дефектоутворення. Причому концентрація
дефектів та час їх життя суттєво залежать від інтенсивності їхнього
введення, тобто від інтенсивності опромінення. В класичній фізиці
напівпровідників вважається, що при взаємодії оптичного випромінювання,
частота якого лежить у смузі власного поглинання монокристала, з
напівпровідником відбувається адіабатичний процес повернення кристала в
початковий стан. Однак, як видно з вищенаведеного, це не так. Наведемо
спрощену модель процесу взаємодії лазерного випромінювання з антимонідом
індію. Цей кристал може перебувати в наступних фазах (кристалографічних
модифікаціях): сфалериту (кубічна), вюрциту (гексагональна),
полікристалічній та аморфній. Кожній з цих модифікацій відповідає своя
структура та симетрія енергетичних зон кристала. Перехід між ними
супроводжується зміною внутрішньої (потенціальної) енергії кристала.
Слід зазначити, що фізика взаємодії оптичного випромінювання у смузі
власного поглинання з точки зору релаксаційної оптики як слід не
розроблена.

При спрощеному розрахунку взаємодія кванта оптичного випромінювання з
енергією 1,78 еВ з антимонідом індію, ширина забороненої зони якого при
кімнатній температурі дорівнює 0,18 еВ, відповідає енергії мінімального
хімічного зв’язку в кристалі (оскільки кристали антимоніду індію
прямозонні).

Окрім того, цей напівпровідник більш як на половину ковалентний. З
кристалографічної точки зору чистий ковалентний зв’язок 1 відповідає
ширині забороненої зони кристала (рис. 4).

З чисто геометричних міркувань видно, що в кристалографічному напрямку
{111} переріз ефективної взаємодії кванта рубінового лазера зі зв’язком
1 більш ефективний, ніж для напрямку {110}. Кванти рубінового лазера при
доволі низьких інтенсивностях опромінення (однофотонні процеси) з іншими
зв’язками практично не взаємодіють, тому що їхня енергія значно менша за
енергію цих зв’язків. Простий геометричний підрахунок стверджує, що у
випадку сферичного чи еліпсоїдального зв’язку співвідношення площ
зв’язку 1 з рис.4 буде дорівнювати тангенсу або ж котангенсу нашого кута
зв’язку.

можна податити в наступному вигляді [4]

, (1)

– знак суми.

. Приблизно ж таке співвідношення між концентраціями донорних центрів
антимоніду індію отриманих за допомогою опромінення імпульсами
рубінового лазера для відповідних кристалографічних напрямків (рис. 4).
Саме короткий час взаємодії оптичного випромінювання з антимонідом індію
й дозволяє зв’язати спостережувані ефекти з механізмами власного
поглинання оптичного випромінювання (у цьому випадку з розсіянням світла
на зв’язку 1 рис. 4).

( * F H J L f h ? ? ? ” – ? ? 4

6

¤

¦

* , ? ‚ ?

3/4

Z

$?/?/?/?/A/Ae/AE/E/ae/v1x1?1 1c1¤1i1o1oe1o1-2
2″2$2&2*2,2024282<2l2n2”2ueoueoaUNoEAE®cAE›EAE?|AsEjEcEcEAE&F9пов’язаний із різною рухливістю атомів індію, сурми та миш’яку, атоми індію в решітці більш рухливі, а в міжвузлях менш рухливі, ніж атоми сурми. Так, коефіцієнт самодифузії атомів індію в антимоніді індію при кімнатній температурі на три порядки більший, ніж сурми [6]:;.;,– коефіцієнт самодифузії, а D – коефіцієнт дифузії.Це обумовлено, головним чином, асиметрією розташування атомів у кристалі (рис. 4). Тому дефекти мають донорний тип провідності. Оцінку коефіцієнта дифузії дефектів при низьких температурах можна також оцінити завдяки співвідношенню [7]:(2)  – кількість розірваних зв’язків.Уявлення про розірвані зв’язки можна використовувати як в радіаційній фізиці [7], так і в фізиці взаємодії оптичного випромінювання з твердими тілами [8]. Утворення дефектів пов’язане зі зміною відповідних хімічних зв’язків, тому ці процеси можна описувати завдяки кількості розірваних зв’язків (“dangling bonds” [8]).Це цілком відповідає спостережуваним експериментальним результатам: при низьких інтенсивностях опромінення профілі розподілу донорних центрів відповідають закону Бугера-Ламберта (рис.2). До речі, це значення коефіцієнта дифузії співрозмірне зі значенням коефіцієнта самодифузії атомів індію в антимоніді індію при порівняно низьких температурах. Донорний тип провідності пов’язаний із тим, що атоми індію у вільному стані менш рухливі, ніж атоми сурми. Іншими словами, атоми індію легше виходять в міжвузля, але важче повертаються назад, як атоми сурми, тому після опромінення в міжвузлях лишається більше атомів індію, які є донорами. При підвищенні дози опромінення, коли великий вклад мають теплові ефекти, коефіцієнт дифузії збільшується, і тому дефекти проростають у глибину кристала, при цьому за рахунок того, що коефіцієнти самодифузії атомів індію та сурми близькі між собою, проходить зменшення шарової концентрації дефектів.Те, що з подальшим збільшенням інтенсивності опромінення більший вклад починають давати теплові ефекти, які призводять як до відпалу, так і до міграції дефектів, які пов’язані з перерозподілом компонент базового матеріалу напівпровідника у глибину кристала, підтверджують експериментальні дані для КРТ [9]. Тому при більших інтенсивностях опромінення відбувається рекристалізація приповерхневого шару з урахуванням внутрікристалічних полів, теплових процесів та перерозподілу іонів базового матеріалу, що обумовлено їхньою різною рухливістю, особливо на первинній стадії опромінення (стадії утворення первинних радіаційних дефектів). Це й призводить до зменшення шарової концентрації дефектів. При менших інтенсивностях (для антимоніду індію 0,07 Дж(см-2) основною причиною зменшення кількості дефектів є внутрікристалічні поля, що й пояснює зменшення кількості дефектів із часом при менших інтенсивностях опромінення.ЛітератураКурбатов Л.Н., Стоянова И.Г., Трохимчук П.П., Трохин А.С. Лазерный отжиг полупроводни-ковых соединений элементов АшВv // ДАН СССР. – 1983. – Т.268. – Вып.3. – С.594-597.Трохимчук П.П. Поліметричне моделюванння інформаційних та фізичних процесів. – Луцьк: Вежа, 1999. – 344 с.Трохимчук П.П. Розробка основ теорії нестандартного моделювання інформаційних та фізичних процесів. Дисертація ... д. техн. н. – Вінниця: Держ. техн. ун-тет, 1994. – 280 с.Зельдович Я.Б. Высшая математика для начинающих и ее применения в физике. – М.: Наука, 1970. – 560 с.Маделунг О. Физика полупроводниковых соединений элементов ІІІ и V групп. – М.: Мир, 1967. – 477 с.Баранский П.И., Клочков В.П., Потыкевич И.В. Полупроводниковая электроника. – К.: Наук. думка, 1975. – 703 с.Винецкий В.Л., Холодарь Г.А. Радиационная физика полупроводников. – К.: Наук. думка, 1979. – 336 с.Wantelet M., Faily-Lovatto M., Lande L.D. Dangling bonds in Si and Ge during laser irradiation. Phys.C.:Sol.-St.Phys.,v.13, 1980. –P.5505-5514.Bahir G., Kalish R. cw CO2 ruby laser annealing of ion-implanted Hg1xCdxTe // Applied Physics Letters.– 1981. – №9.–V.39.– P. 730-732.в Mg+/InSb після опромінення імпульсами рубінового /3/ та лазера на СО2 /4/0,750,50,25010-2 10-1 100 10101510131011nS,см-2I0,Дж(см-2123410151014101310120 0,25 0,5 0,75х,мкмnS,см-2=0, 1 Дж(см-2120,2510-2 10-1 100I0, Дж(cм-2Рис 3. Динаміка поведінки дефектів в InSb після опромінення імпульсами рубінового лазера: ( – 2-4 години після опромінення; ( – 48 годин після опромінення; ( – тиждень після опромінення; – два тижні після опромі-нення індію в кубічній модифікації прямозонні{111}{110}1Рис 4. Двомірне зображення кристалічної решітки кристала А3В5 (у тому числі й антимоніду індію) кубічної модифікації (сфалерит). Зв’язок 1 відповідає чистому ковалентному

Нашли опечатку? Выделите и нажмите CTRL+Enter

Похожие документы
Обсуждение

Оставить комментарий

avatar
  Подписаться  
Уведомление о
Заказать реферат!
UkrReferat.com. Всі права захищені. 2000-2019