.

Водоснабжение (реферат)

Язык: русский
Формат: реферат
Тип документа: Word Doc
1 458
Скачать документ

Министерство образования РФ

ХГТУ

Кафедра: «экономики и управления в строительстве»

КУРСОВАЯ РАБОТА

По Предмету: «Техника и технология отраслей городского хозяйства»

На Тему:«Централизованное водоснабжение»

ВЫПОЛНИЛ: студент группы ЭГХ-21у

Суворов С.В.

ПРОВЕРИЛ: преподаватель

Власов А.И.

Хабаровск 2003 г.

 

Введение

 

Водоснабжение и водоотведение являются важнейшими санитарно техническими системами, обеспечивающими нормальную жизнедеятельность населения и всех отраслей народного хозяйства страны.

Используя природные водные источники, эти системы снабжают водой различных потребителей, а также обеспечивают очистку сточных вод, их отведение и возврат природе, защиту и охрану водоисточников от загрязнения и истощения.

Системы водоснабжения и водоотведения представляют собой сложные инженерные сооружения, устройства и оборудование, в значительной степени определяющие уровень благоустройства зданий, объектов и населенных пунктов, рентабельность и экономичность промышленных предприятий.

Системы водоснабжения – это комплекс сооружений, предназначенных для снабжения потребителей водой в необходимых количествах, требуемого качества и под требуемым напором. Системы состоят из сооружений для забора воды из источника водоснабжения, ее обработки, перекачки воды к потребителю и сооружений для ее хранения.

Эта отрасль обладает рядом технологических особенностей:

  1. Постоянство (неизменное состояние технологических этапов в независимости от размеров технологий);
  2. Непрерывность (реализация технологических этапов в строгой повторяющей последовательности).

В зависимости от вида обслуживаемого объекта системы водоснабжения подразделяются на городские, промышленные, сельскохозяйственные, железнодорожные. В зависимости от вида потребителей системы выполняют функции хозяйственно-питьевых, производственных, противопожарных, поливочных водопроводов.

В целом можно говорить о том что от стабильного функционирования данных систем зависит нормальная работа города, предприятий, здоровье и безопасность жителей. Мы привыкли к тому, что открыв кран из него чечет вода и порой даже не задумываемся, усилия скольких людей, бесперебойная работа машин и сооружений за этим стоят. Но стоит нам на несколько дней отключить воду и мы сразу почувствуем как начнутся сбои в организме города.

  1. РАСЧЕТНАЯ ЧАСТЬ

 

 

1.1. Нормы и режимы водопотребления

 

Расчетные расходы воды определяют с учетом числа жителей населенного места и норм водопотребления.

Нормой хозяйственно-питьевого водопотребления в населенных местах называют количество воды в литрах, потребляемой в сутки одним жителем на хозяйственно-питьевые нужды. Норма водопотребления зависит от степени благоустройства зданий и климатических условий.

 

Таблица 1

Нормы водопотребления

 

Степень благоустройства зданий

Нормы на одного жителя среднесуточная (за год), л/сут
Застройка зданиями, оборудованными внутренним водопроводом и канализацией:

–         без ванн

–         с ваннами и местными водонагревателями

–         с централизованным горячим водоснабжением

 

 

125-160

160-230

230-350

 

Меньшие значения относятся к районам с холодным климатом, а большие – к районам с теплым климатом.

В течение года и в течение суток вода для хозяйственно-питьевых целей расходуется неравномерно (летом расходуется больше, чем зимой; в дневные часы – больше, чем в ночные).

Расчетный (средний за год) суточный расход воды на хозяйственно-питьевые нужды в населенном пункте определяют по формуле

 

Qсут m = qж Nж/1000, м3/сут;

 

Qсут m = 300*85000/1000 = 25500 м3/сут.

Где qж – удельное водопотребление;

Nж – расчетное число жителей.

Расчетные расходы воды в сутки наибольшего и наименьшего водопотребления, м3/сут,

 

 

Qсут max = Kсут max* Qсут m;

Qсут min = Kсут min* Qсут m.

Коэффициент суточной неравномерности водопотребления  Kсут  следует принимать равным

 

Kсут max = 1,1 – 1,3

Kсут min = 0,7 – 0,9

 

Большие значения Kсут max принимают для городов с большим населением, меньшие – для городов с малым населением. Для Kсут min – наоборот.

 

Qсут max = 1,2*25500 = 30600 м3/сут;

Qсут min = 0,8*25500 = 20400 м3/сут.

 

Расчетные часовые расходы воды, м3/ч,

 

 

qч max = Kч max * Qсут max/24

qч min = Kч min * Qсут min/24

 

Коэффициент часовой неравномерности водопотребления определяют из выражений

 

Kч max = amax * bmax

Kч min = amin * bmin

 

Где a – коэффициент, учитывающий степень благоустройства зданий: amax = 1,2-1,4; amin = 0,4-0,6 (меньшие значения для amax и большие для amin принимают для более высокой степени благоустройства зданий); b – коэффициент, учитывающий число жителей в населенном пункте.

 

 

Kч max = 1,2*1,1 = 1,32

Kч min = 0,6*0,7 = 0,42

qч max = 1,32*30600/24 = 1683 м3

qч min = 0,42*20400/24 = 357 м3

 

Расходы воды на пожаротушение.

Расходование воды для тушения пожаров производится эпизодически – во время пожаров. Расход воды на наружное пожаротушение (на один пожар) и количество одновременных пожаров в населенном пункте принимают по таблице, учитывающей расход воды на наружное пожаротушение в соответствии с числом жителей в населенном пункте.

Одновременно рассчитывают расход воды на внутреннее пожаротушение из расчета две струи по 2,5 л/с на один расчетный пожар.

Расчетную продолжительность тушения пожара принимают равной 3 часам.

Тогда запас воды на пожаротушение

 

Wп =nп (qп+2,5*2)*3*3600/1000, м3

Где nп – расчетное число пожаров; qп – норма расхода воды на один расчетный пожар, л/с.

В нашем случае  nп = 2;  qп = 35 л/с.

 

Wп = 2*(35+2,5*2)*3*3600/1000 = 864 м3

 

Часовой расход на пожаротушение

 

Qп.ч. = Wп/3 = 864/3 = 288 м3

 

По рассчитанному коэффициенту часовой неравномерности Kч max = 1,32 задаемся вероятным графиком распределения суточных расходов по часам суток.

По данным таблицы распределения суточных хозяйственно-питьевых расходов по часам суток при разных коэффициентах часовой неравномерности для населенных пунктов для Kч max = 1,32 строим график суточного водопотребления и совмещаем с этим графиком графики подачи воды насосами 1 и 2 подъема.

 

 

1.2 Определение объема баков водонапорных башен и резервуаров чистой воды

 

Вместимость бака водонапорной башни может быть определена с помощью совмещенных графиков водопотребления и работы насосной станции II подъема. Результаты вычислений помешены в таблицу 2, где отражена регулирующая роль бака водонапорной башни. Так, в период от 22 до 7ч и с 10 до 12ч утра излишки воды подаваемой насосной станцией II подъема, в размере от 0,2 до 0,9 % суточного расхода каждый час будут поступать в бак; в период с 7 до 9ч и с 12 до 22ч вода будет  расходоваться из бака в размере от 0,3 до 0,8 % суточного расхода.

 

Таблица 2

 

Расчет регулирующей емкости бака водонапорной башни,

% суточного расхода

 

Часовые промежуткиРасход воды городомПодача воды насосамиПоступление в бакРасход воды из бакаОстаток в баке
0-1

1-2

2-3

3-4

4-5

5-6

6-7

7-8

8-9

9-10

10-11

11-12

12-13

13-14

14-15

15-16

16-17

17-18

18-19

19-20

20-21

21-22

22-23

23-24

 

3,2

3,1

3,2

3,2

3,2

3,4

3,8

4,6

5,4

5

4,8

4,6

4,5

4,4

4,6

4,6

4,4

4,3

4,4

4,5

4,5

4,8

3,8

3,7

4

4

4

4

4

4

4

4

5

5

5

5

4

4

4

4

4

4

4

4

4

4

4

4

 

0,8

0,9

0,8

0,8

0,8

0,6

0,2

0,2

0,4

0,2

0,3

0,6

0,4

0,5

0,4

0,6

0,6

0,4

0,3

0,4

0,5

0,5

0,8

 

1,3

2,2

3

3,8

4,6

5,2

5,4

4,8

4,4

4,4

4,6

5

4,5

4,1

3,5

2,9

2,5

2,2

1,8

1,3

0,8

0

0,2

0,5

 

Регулирующая емкость бака водонапорной башни – разность между максимальным и минимальным остатками воды в баке. Из таблицы 2 следует:   5,4 –  0 = 5.4 % суточного потребления:

 

Wр = Qсут max * 5,4/100 = 30600*5,4/100 = 1652,4 м3

 

Емкость баков водонапорных башен определяют из условия неблагоприятной работы всей системы, то есть исходя из предположения, что пожары происходят в часы наибольшего водопотребления и что расходование воды для собственных целей очистной станции (промывка фильтров) не прекращается.

Емкость баков водонапорных башен определяется как сумма регулирующей емкости и объема воды, необходимого для тушения в течении 10 минут одного внутреннего и одного наружного пожара:

Wб = Wр + (qп +2*2,5)*10*60/1000, м3

Wб = 1652,4+(35+5)*10*60/1000 = 1676,4 м3

 

Принимаем две водонапорные башни.

Емкость одного регулирующего бака составит

 

Wбо = 838,2 м3

 

Геометрические размеры бака определяют из рекомендуемого соотношения высоты и диаметра бака: Но = 0,7 Дб.

Тогда Wбо =( p Дб2/4)* Но = ( p Дб2/4)*0,7 Дб;

Wбо = 0,55Дб3;

Дб =

Диаметр бака одной башни Дб = 11,5 м.

Высота бака Но = 8 м

Емкость резервуаров чистой воды на станции очистки

 

Wрез = Wр +Wп +Wф + 3 qч max – 3*4,17/100 Qсут max,

Где Wф – объем воды, необходимый для собственных нужд очистной станции
( на промывку фильтров) в течение 3 часов:

Wф = 3*(0,05-0,08)*Qсут max/24 = 3*(0,06)*30600/24=229,5

 

Wрез = 1655+870+230+3*1683-3*4,17/100*30600 =3975,94 ~ 4000 м3

 

C другой стороны, емкость резервуаров чистой воды определяется соотношением режимов работы насосных станций 1 и 2 подъема. Накопление чистой воды в резервуарах происходит в период с 1300 до 800. За это время (19 часов) насосы 1 подъема подадут объем воды, равный 0,0417*30600*19= 24245 м3; насосы 2 подъема  подадут из резервуаров в сеть объем воды, равный 0,04*30600*19 =23256 м3. Необходимый объем резервуаров чистой воды

Wрез = 24245-23256=989~1000 м3

Принимаем больший объем – 1000 м3

 

 

 

 

 

1.3 Построение пьезометрической линии.

Подбор насосов 2 подъема.

 

 

Минимальный свободный напор в сети водопровода при максимальном хозяйственно-питьевом потреблении на вводе в здание должен приниматься при одноэтажной застройке не менее 10 м. При большей этажности на каждый этаж следует добавлять 4 м.

 

Нсв=10+4(Э-1)

Где Э – этажность застройки.

В нашем примере Нсв = 10+4*(5-1)=26 м

Диктующей точкой является точка a.

 

 

 

 

Пьезометрическая линия характеризует падение напора в сети в часы максимального водопотребления. Когда из-за движения воды по водоводу появляются потери напора по длине.

Высоту водонапорной башни (высота расположения дна бака башни) определяют из соотношения высот:

 

Нб+Zб= Zасв+hба,

Нб= Нсв+hба-( Zб– Zа),

Где hба – потери напора на участке от башни до диктующей точки a;

hба=i*lба; i=(5-8)м вод.ст. на 1 км.

В нашем примере

Нб=26+6*0,5-(65-52)=16м

 

Пьезометрическая линия от насосной станции 2 подъема до башни определяют необходимый напор насосов 2 подъема из соотношения

 

Zн||-hнб=Zб+ Нбо,

Н||=( Zб– Zн)+( Нбо)+ hнб+(2-2,5)

Где (2-2,5) – потери набора во внутренних коммуникациях насосной станции.

В нашем примере

 

Н||=65-45+16+8+6*1,5+2 = 55 м вод. ст.

 

Подбор насосов станции 2 подъема

 

Насосы подбирают по каталогам центробежных насосов для чистых жидкостей по требуемым производительности (подачи) и напору.

Из совмещенного графика водопотребления и режимов насосных станций следует, что в час максимального водопотребления (с 8 до 10 часов) подача воды насосами 2 подъема составляет 5 % от суточного хозяйственно-питьевого потребления.

С учетом пожарного водопотребления насосы второго подъема должны обеспечить подачу

 

Q||=0,05 Qсут max+Qп.ч.

Q||=0,05*30600+290=1820»1850 м3

 

 

 

Примем 4 насоса, тогда каждый насос должен подавать 462.5 м3/ч при 55м вод.ст.

По каталогам подбираем марку насоса.

Требованиям удовлетворяет насос Д1250-65 (12 НДс) с параметрами: подача 500 м3/ч, напор – 65м вод.ст., мощность двигателя – 100кВт, масса агрегата – 1680 кг.

 

 

  1. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

 

2.1. Качество воды и основные методы ее очистки

 

Качество природной воды зависит от наличия в ней различных веществ неорганического и органического происхождения.

Содержание в воде нерастворенных веществ характеризуется мутностью в мг на литр.

Присутствие в воде гумусовых веществ характеризуется цветностью в градусах по так называемой платинокобальтовой шкале.

Содержащиеся в воде соли кальция и магния придают ей жесткость.

Загрязненность воды бактериями характеризуются количеством бактерий, содержащихся в 1 куб.см. воды.

Методы очистки воды зависят от качества природной воды, потребляемого расхода и требований к ее качеству. При очистке речной воды для хозяйственно-питьевых нужд наиболее широко применяют осветление, обесцвечивание и обеззараживание воды (дезинфекция).

Более глубоко и более эффективно осветление воды происходит при коагулировании и пропуске через «взвешенный слой» хлопьев, ранее отделенных от воды в осветлителях.

Для глубокого осветления воды применяют ее фильтрование через песчаные фильтры.

Коагулирование с последующим отстаиванием и фильтрованием, а затем хлорированием воды применяют также для устранения цветности и снижения окисления воды.

Обеззараживание воды производят хлорированием, озонированием, ультрафиолетовым облучением.

Для снижения жесткости (умягчения), обессоливания и дегазации воды применяют химические и физико-химические методы обработки воды. Их применяют одновременно с отстаиванием и фильтрованием.

2.2. Выбор технологической схемы очистки воды

 

В процессе очистки вода должна пройти ряд очистных сооружений, в которых осуществляются принятые методы очистки.

Наиболее распространенные технологические схемы очистки речной воды для хозяйственно-питьевых целей.

  1. Глубокое осветление, обесцвечивание и обеззараживание воды путем коагулирования и последовательного осветления воды в отстойниках и на фильтрах. Природная вода насосами 1 подъема 1 подается в смеситель 3, куда одновременно подаются реагенты, приготовленные в реагентном цехе 2. После смешения с реагентами вода поступает в камеру хлопьеобразования 4, где происходит процесс агломерации взвешенных (мутность) и коллоидальных (цветность) частиц в крупные хлопья. Затем вода поступает в отстойники 5, в которых движется с малой скоростью (2-10 мм/с). При этом основная масса образовавшихся хлопьев отделяется от обрабатываемой воды и выпадает в осадок. Из отстойников воду подают на фильтры 6 для глубокого осветления путем пропуска ее через толщу песчаной загрузки. В процессе очистки в толще фильтров накапливаются загрязнения. Для их удаления фильтры
  • Осветленную воду обеззараживают и собирают в резервуарах чистой воды 7, где обеззараживание завершается в результате контакта с дезинфекторами (хлором, озоном).
    выключают из работы и промывают.

Вода, подаваемая в сеть, не должна содержать озона, так как он вызывает коррозию труб и оборудования. Поэтому воду, обработанную озоном, выдерживают в резервуарах до завершения расходования озона.

 

  • Отличие от ранее описанной схемы состоит в том, что в ней отстойники заменены осветлителями, при применении которых отпадает необходимость в устройстве камеры хлопьеобразования. Процесс коагуляции взвесей и осветления воды происходит во взвешенном слое осадка.
    На рисунке 4 также показана схема глубокого осветления, обесцвечивания и обеззараживания воды.

 

  1. Технологическая схема, представленная на рисунке 5, имеет лишь одно сооружение для осветления воды – контактные осветлители (песчаные фильтры с движением воды снизу вверх).

По рассмотренным технологическим схемам обесцвечивание воды происходит в результате сорбции коллоидных гумусовых веществ, обусловливающих цветность воды.
В них коагуляция взвесей и осветление воды происходит одновременно. Укрупнение частиц в хлопья происходит не в свободном объеме, а на поверхности зерен фильтрующего материала под действием сил прилипания (контактная коагуляция). Общий объем очистных сооружений по этой схеме значительно меньше, чем по предыдущим. Эту схему можно применять при малом содержании в воде взвешенных веществ – до 150-200 мг/л.

При выборе сооружений для осветления и обесцвечивания воды рекомендуется руководствоваться данными.

В соответствии с моими исходными данными: мутность – 200 мг/л; цветность – 90 град;  по приложению выбираем  для обработки воды с применением коагулянтов и флокулянтов Осветлители  со взвешенным осадком – Скорые фильтры

Как правило, на очистных станциях применяют не менее двух сооружений каждого типа. Этим обеспечивается непрерывность работы очистных станций при авариях и эксплуатационных отключениях сооружений.

Взаимное высотное расположение сооружений предусматривают с таким расчетом, чтобы движение воды от сооружения к сооружению было самотечным. Разность отметок уровней воды в расположенных рядом сооружениях должна быть равна потерям напора при движении воды между сооружениями по трубопроводам и лоткам, а также в самих сооружениях.

Общие потери напора по технологической схеме обычно составляют 3,5-6 м.

  • Реагентное хозяйство

 

 

Коагулирование осуществляют для ускорения процесса осветления и обесцвечивания воды.

Дозу коагулянта Дк, мг/л, в расчете на Al2(SO4)3, FeCl3, Fe2(SO4)2 (по безводному веществу) принимают для мутных вод по таблице, для цветных вод – по формуле.

Где Ц – цветность обрабатываемой воды, град.

При одновременном содержании в воде взвешенных веществ и цветности принимают большую из доз коагулянта.

Дозу флокулянтов (в дополнение к дозам коагулянтов) следует принимать:

полиакриламида (ППА) по безводному продукту при вводе перед отстойниками по таблице.

Флокулянт вводят в воду после коагулянта.

Дозу хлорсодержащих реагентов (по активному хлору) при предварительном хлорировании и для улучшения хода коагуляции и обесцвечивания воды, а также для улучшения санитарного состояния сооружений следует принимать 3-10 мг/л. Реагенты вводят за 1-3 мин до ввода коагулянтов.

Дозы подщелачивающих реагентов Дщ, мг/л, необходимых для улучшения процесса хлопьеобразования, определяют по формуле:

 

Дщщкк – Що) + 1

 

Где Дк – максимальная, в период подщелачивания, доза безводного коагулянта, мг/л; ек – эквивалентная масса коагулянта (безводного), мг/мг-экв, принимаемая для Al2(SO4)3 –  57; , FeCl3 – 54; Fe2(SO4)2 – 67; Кщ – коэффициент, равный для извести (по СаО) – 28; для соды (по Na2CO3) – 53; Що – минимальная щелочность воды, мг-экв/л.

Реагенты вводят одновременно с вводом коагулянтов.

Потребность в реагентах для моего примера:

Доза коагулянта Al2(SO4)3

  • по таблице Дк =30-40 мг/л;
  • по формуле Дк= мг/л,

принимаем Дк=40 мг/л

 

Потребность в сутки максимального водопотребления

 

Ск = 1,05 Qсут max Дк/1000=1,05*30600*40/1000=1285,2 кг.

 

Здесь 0,05 Qсут max – объем воды, необходимый для собственных нужд очистной станции.

Доза флокулянта (ПАА) – по таблице.

ДПАА=0,3-0,6 мг/л, принимаем  ДПАА=0,5 мг/л.

Потребность в сутки максимального водопотребления

 

СПАА=1,05 Qсут max* ДПАА/1000=1,05*30600*0,5/1000=16.07 кг.

 

Доза хлорсодержащих реагентов (по активному хлору) при предварительном хлорировании

ДCl=3-10 мг/л, принимаем ДCl=5 мг/л.

Потребность хлорсодержащих реагентов (по активному хлору) в сутки максимального водопотребления:

 

СCl=1,05 Qсут max* ДCl/1000=1,05*30600*3/1000=96.5 кг

 

Доза подщелачиваемых реагентов (извести)

Дщ=28(40/57-0,2)+1=15 мг/л.

Потребность в сутки максимального водопотребления

 

Сщ=1,05 Qсут max* Дщ/1000=1,05*30600*15/1000=482 кг

 

2.4. Обеззараживание воды

Методы обеззараживания воды составляют четыре основные группы: термический(кипячение), химический (хлор, озон), олигодинамический (воздействие ионов благородных металлов) и физический (ультразвук, ультрафиолетовые лучи).

Наибольшее распространение получили методы второй группы. В качестве окислителей используют хлор, двуокись хлора, озон, иод, перманганат калия, перекись водорода, гипохлорит натрия и кальция. Из перечисленных окислителей на практике отдают предпочтение хлору, озону, гипохлориту натрия.

Хлор опасен при транспортировании и использовании, его утечки могут вызвать отравление людей. Кроме того, при хлорировании образуются хлорорганические соединения, в том числе – диоксин – сильнейший мутаген. При наличии в воде фенолов образуются хлорфенолы, обладающие токсичными свойствами и неприятным запахом.

Достоинство озонирования в том, что, уничтожая, бактерии, споры, вирусы, он разрушает растворенные и взвешенные в воде органические вещества. Это позволяет использовать озон не только для обеззараживания, но и для обесцвечивания и дезодорации воды. При этом природные свойства воды не изменяются. Избыток озона (в отличие от хлора) не только не ухудшает, но и значительно улучшает качество воды – устраняет цветность, привкусы и запахи.

Для обеззараживания воды выбираем метод Хлорирования.

 

2.5. Выбор технологического оборудования станции очистки воды

Решению вопроса о компоновке очистных сооружений должны предшествовать выбор схемы технологического процесса очистки воды, а также установление типа, числа и размеров отдельных сооружений (отстойников фильтров и д.р.). Схему очистки воды, тип сооружений и их компоновку выбирают, исходя из качества воды в источнике и требований потребителей к качеству воды и на основании технико-экономический сравнений возможных вариантов.

В принятой нами схеме очистки воды с применением коагулянтов и флокулянтов Осветлители  со взвешенным осадком – Скорые фильтры.

Вода подаваемая насосной станцией 1 подъема поступает в смеситель куда одновременно подаются реагенты, приготовленные в реагентом цехе, где происходит ее тщательное перемешивание с реагентами в течении 1-2 минут. Из смесителя вода поступает на осветлитель со взвешенным слоем осадка, предназначенного для предварительного осветления воды перед фильтрованием. Для глубокого осветления воды применяют фильтры открытого типа. После фильтров осветленная вода поступает в резервуар чистой воды. В трубу подающую в резервуар вводится хлор из хлораторной. Необходимый для обеззараживания воды контакт ее с хлором обеспечивается в резервуаре. В нашем случае хлор в воду подается дважды, перед смесителем (первичное хлоривание) и после фильтров (вторичное хлорирование). Из за недостаточной щелочности исходной воды в смеситель одновременно с коагулянтом подается раствор извести через дозаторы. Для интенсификации процессов коагуляции перед камерой хлопьеобразования вводят через дозатор флокулянт – полиакриламид ПАА – 10.

Смеситель –используется обычный перегородчатый смеситель.

По выбранной нами схеме применяется осветлитель со взвешенным слоем осадка (Коридорного типа) – Который представляет собой прямоугольный в плане резервуар, разделенный на три секции. Две крайние секции являются рабочими камерами осветлителя, а средняя служит осадка уплотнителем. Осветляемая вода подается у дана осветлителя по перфорированным трубам и равномерно распределяется по площади осветлителя. Затем она проходит через взвешенный слой осадк, осветляется и по перфорированному лотку (или трубе), располагаемому на некотором расстоянии  над поверхностью взвешенного слоя, отводится на фильтры.

Взвешенный слой осадка состоит из хлопьев непрерывно и хаотически двигающихся под действием потока воды, вследствие чего масса осадка во взвешенном слое постоянно перемешивается. Излишки постоянно накапливаемого садка отводятся через осадка приемные окна в осадкоуплотнитель. Осветление воды через движение ее через взвешенный слой объясняется явлением коагуляции. При движении частиц взвеси с потоком воды через взвешенный слой, который непрерывно перемешивается, обеспечивается частое столкновение их с ранее образовавшимися хлопьями и хлопьями вновь формирующимися вокруг частиц коагулянта. Процесс коагуляции и осветления воды здесь протекает интенсивнее чем в камерах хлопье образования и в отстойниках. Перед осветлителем не требуется устройства камер хлопьеобразования.

Из осветлителя воду подают на фильтры для глубокого осветления путем пропуска ее через толщу песчаной загрузки. Эти фильтра способны улавливать почти все взвеси, В нашем случае используются скорые фильтры (5,5 – 12 м/ч). Скорый безнапорный фильтр представляет собой прямоугольный железобетонный резервуар, который загружен кварцевым песком, уложенным на гравийный поддерживающий слой. Осветляемая вода по трубопроводу подается на фильтр, проходит через фильтрующею загрузку, в которой задерживаются взвешенные частицы, и собираются дренажной системой. Дренаж выполняется из перфорированных труб. Из дренажа по трубопроводу осветленная вода отводится в резервуар чистой воды.

Во зависимости от количества воды, поступающей на фильтр, и содержания в ней взвешенных веществ периодически осуществляют промывку фильтра (через 12 –72 ч)

Промывка скорых  фильтров производится обратным потоком воды. Промывная вода по трубе подается в дренаж, который равномерно распределяет воду по площади фильтра. При движении воды снизу вверх через загрузку фильтрующий слой расширяется, увеличиваясь в объеме и перемешивается, в результате чего происходит отмывка зерен загрузки от загрязнений. промывная вода собирается желобами и отводится в карман. В период промывки задвижки на фильтрах предназначенных для отвода фильтрата, закрыты. Расход воды, подаваемой на промывку 1 м3 фильтрующей поверхности называется интенсивностью промывки (15-16 л/см2). Продолжительность подачи промывной воды на скорый фильтр равна 3-8 мин. После промывки фильтр снова включают в работу.

Хлорирование осветленной воды проводится перед поступлением ее в резервуар чистой воды хлорсодержащие реагенты вводят в трубопровод фильтрованной воды концентрация 2 мг/л при этом должны быть обеспеченны хорошее смешивание его с водой и достаточная продолжительность (не менее 30 мин) его контакта с водой до ее подачи потребителю. Также производится предварительное хлорирование способствующее коагуляции и позволяющее снизить расход хлора Осветленную и обеззараженную воду собирают в резервуарах чистой воды, где обеззараживание завершается в результате контакта с дезинфекторами (хлором).

Дозирование газообразного хлора осуществляется вакуумными хлораторами. Концентрация остаточного свободного хлора в воде, забираемой из резервуаров чистой воды, должна быть не менее 0.3 и не более 0.5мг\л. Хлорное хозяйство располагают в отдельно стоящих хлора торных, в которых сблокированы расходный склад хлора, испарители (в случае необходимости) и помещение для хлораторов (хлор дозаторные). Воздух, выбрасываемый в атмосферу постоянно действующими вентиляционными системами складов хлора и хлор дозаторных, удаляется через трубу при этом предусматривается его очистка.

 

Заключение

 

Список литературы

  1. Илясов Г.И. Водоснабжение и водоотведение:
    учебное пособие. Саратов, 1994 г.
  2. Николадзе Г.И. Коммунальное водоснабжение и канализация.
    М: Стройиздат, 1983 г.
  3. СНиП 2.04.02-84. Водоснабжение. Наружные сети и сооружения/Госстрой СССР. М: Стройиздат, 1985г.
  4. Кедров В.С. Водоснабжение и водоотведение: Учеб ник для вузов – 2 –е изд., переработанное и дополненное – М.:Стройиздат, 2002.
  5. Абрамов Н.Н. Водоснабжение: Учеб ник для вузов – 3 –е изд., переработанное и дополненное – М.:Стройиздат, 1982.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ХАБАРОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра экономики и управления в строительстве

КУРСОВАЯ РАБОТА

ПО ПРЕДМЕТУ:

«ТЕХНИКА И ТЕХНОЛОГИЯ ГОРОДСКОГО ХОЗЯЙСТВА»

НА ТЕМУ:

«ЦЕНТРАЛИЗОВАННОЕ ВОДОСНАБЖЕНИЕ»

ВЫПОЛНИЛА: студентка группы ЭГХ-21у

Москаленко А.А.

ПРОВЕРИЛ: преподаватель

Власов А.И.

Хабаровск

2003 г.

Содержание

 

 

Введение
  1. Расчетная часть
    • Нормы и режимы водопотребления
    • Определение объема баков водонапорных башен и резервуаров чистой воды
    • Построение пьезометрической линии. Подбор насосов 2 подъема
  2. Технологическая часть
    • Качество воды и основные методы ее очистки
    • Выбор технологической схемы очистки воды
    • Реагентное хозяйство
    • Обеззараживание воды
    • Выбор технологического оборудования станции очистки воды

Заключение

Приложение

Список литературы

Введение

 

Городское хозяйство – это совокупность предприятий, занятых производством и реализацией жилищно-коммунальной продукции и услуг.

Отрасль городского хозяйства – совокупность предприятий, реализующих одинаковый вид продукции, услуг.

Централизованное водоснабжение является одной из важной отраслью городского хозяйства, имеющая ряд особенностей и выполняющая свои функции в жизни городского хозяйства.

Централизованное водоснабжение – это отрасль городского хозяйства, обеспечивающая водопотребителей водой в необходимых количествах, требуемого качества и под требуемым напором.

Комплекс инженерных сооружений, выполняющих задачи водоснабжения, называется  системой водоснабжения (водопроводом).

Централизованное водоснабжение обеспечивает население водой, которая должна быть безопасна в отношении инфекций, безвредна по химическому составу и с хорошими органолептическими качествами.

Эта отрасль обладает рядом технологических особенностей:

  1. Постоянство (неизменное состояние технологических этапов в независимости от размеров технологий);
  2. Непрерывность (реализация технологических этапов в строгой повторяющей последовательности).

Но как и многих отраслей городского хозяйства, у водоснабжения имеются свои проблемы и недостатки. Это и  недостаточное финансирование на содержание, своевременный капитальный и текущий ремонт оборудования, на приобретение и эксплуатацию современных технологий, отсюда и постоянные сбои в работе оборудования, технологии. В результате это сказывается на качестве поступаемой в дома воды, в ее химическом и физическом составе.

  1. РАСЧЕТНАЯ ЧАСТЬ

 

 

1.1. Нормы и режимы водопотребления

 

Расчетные расходы воды определяют с учетом числа жителей населенного места и норм водопотребления.

Нормой хозяйственно-питьевого водопотребления в населенных местах называют количество воды в литрах, потребляемой в сутки одним жителем на хозяйственно-питьевые нужды. Норма водопотребления зависит от степени благоустройства зданий и климатических условий.

 

Таблица 1

Нормы водопотребления

 

Степень благоустройства зданий

Нормы на одного жителя среднесуточная (за год), л/сут
Застройка зданиями, оборудованными внутренним водопроводом и канализацией:

–         без ванн

–         с ваннами и местными водонагревателями

–         с централизованным горячим водоснабжением

 

 

125-160

160-230

230-350

 

Меньшие значения относятся к районам с холодным климатом, а большие – к районам с теплым климатом.

В течение года и в течение суток вода для хозяйственно-питьевых целей расходуется неравномерно (летом расходуется больше, чем зимой; в дневные часы – больше, чем в ночные).

Расчетный (средний за год) суточный расход воды на хозяйственно-питьевые нужды в населенном пункте определяют по формуле

 

Qсут m = qж Nж/1000, м3/сут;

 

Qсут m = 300*150000/1000 = 45000 м3/сут.

Где qж – удельное водопотребление;

Nж – расчетное число жителей.

Расчетные расходы воды в сутки наибольшего и наименьшего водопотребления, м3/сут,

 

 

 

Qсут max = Kсут max* Qсут m;

Qсут min = Kсут min* Qсут m.

Коэффициент суточной неравномерности водопотребления  Kсут  следует принимать равным

 

Kсут max = 1,1 – 1,3

Kсут min = 0,7 – 0,9

 

Большие значения Kсут max принимают для городов с большим населением, меньшие – для городов с малым населением. Для Kсут min – наоборот.

 

Qсут max = 1,3*45000 = 58500 м3/сут;

Qсут min = 0,7*45000 = 31500 м3/сут.

 

Расчетные часовые расходы воды, м3/ч,

 

qч max = Kч max * Qсут max/24

qч min = Kч min * Qсут min/24

 

Коэффициент часовой неравномерности водопотребления определяют из выражений

 

Kч max = amax * bmax

Kч min = amin * bmin

 

Где a – коэффициент, учитывающий степень благоустройства зданий: amax = 1,2-1,4; amin = 0,4-0,6 (меньшие значения для amax и большие для amin принимают для более высокой степени благоустройства зданий); b – коэффициент, учитывающий число жителей в населенном пункте.

 

 

Kч max = 1,2*1,1 = 1,32

Kч min = 0,6*0,7 = 0,42

qч max = 1,32*58500/24 = 3217,5 м3

qч min = 0,42*31500/24 = 551,25 м3

 

Расходы воды на пожаротушение.

Расходование воды для тушения пожаров производится эпизодически – во время пожаров. Расход воды на наружное пожаротушение (на один пожар) и количество одновременных пожаров в населенном пункте принимают по таблице, учитывающей расход воды на наружное пожаротушение в соответствии с числом жителей в населенном пункте.

Одновременно рассчитывают расход воды на внутреннее пожаротушение из расчета две струи по 2,5 л/с на один расчетный пожар.

Расчетную продолжительность тушения пожара принимают равной 3 часам.

Тогда запас воды на пожаротушение

 

Wп =nп (qп+2,5*2)*3*3600/1000, м3

Где nп – расчетное число пожаров; qп – норма расхода воды на один расчетный пожар, л/с.

В нашем случае  nп = 3;  qп = 40 л/с.

 

Wп = 3 (40+2,5*2)*3*3600/1000 = 1458 м3

 

Часовой расход на пожаротушение

 

Qп.ч. = Wп/3 = 1458/3 = 486 м3

 

По рассчитанному коэффициенту часовой неравномерности Kч max = 1,32 задаемся вероятным графиком распределения суточных расходов по часам суток.

По данным таблицы распределения суточных хозяйственно-питьевых расходов по часам суток при разных коэффициентах часовой неравномерности для населенных пунктов для Kч max = 1,32 строим график суточного водопотребления и совмещаем с этим графиком графики подачи воды насосами 1 и 2 подъема.

1.2 Определение объема баков водонапорных башен и резервуаров чистой воды

 

Вместимость бака водонапорной башни может быть определена с помощью совмещенных графиков водопотребления и работы насосной станции 2 подъема. Результаты вычислений помешены в таблицу 2, где отражена регулирующая роль бака водонапорной башни. Так, в период от 22 до 5ч утра нехваток воды, недодаваемой насосной станцией 2 подъема, в размере от 0,1 до 0,8 % суточного расхода каждый час будут расходоваться из бака; в период с 5 до 8ч и с 10 до 19ч вода будет  поступать в бак в размере от 0,2 до 0,7 % суточного расхода.

 

Таблица 2

 

Расчет регулирующей емкости бака водонапорной башни,

% суточного расхода

 

Часовые промежуткиРасход воды городомПодача воды насосамиПоступление в бакРасход воды из бакаОстаток в баке
0-1

1-2

2-3

3-4

4-5

5-6

6-7

7-8

8-9

9-10

10-11

11-12

12-13

13-14

14-15

15-16

16-17

17-18

18-19

19-20

20-21

21-22

22-23

23-24

 

 

3,2

3,1

3,2

3,2

3,2

3,4

3,8

4,6

5,4

5

4,8

4,6

4,5

4,4

4,6

4,6

4,4

4,3

4,4

4,5

4,5

4,8

3,8

3,7

3

3

3

3

3

5

5

5

5

5

5

5

5

5

5

5

5

5

5

3

3

3

3

3

1,6

1,2

0,4

0,2

0,4

0,5

0,6

0,4

0,4

0,6

0,7

0,6

0,2

0,1

0,2

0,2

0,2

0,4

1,5

1,5

1,8

0,8

0,7

-1

-1,1

-1,3

-1,5

-1,7

-0,1

1,1

1,5

1,1

1,1

1,3

1,7

2,2

2,8

3,2

3,6

4,2

4,9

5,5

4,0

2,5

0,7

-0,1

-0,8

Регулирующая емкость бака водонапорной башни – разность между максимальным и минимальным остатками воды в баке. Из таблицы 2 следует: (5,5 –  (-1,7)) = 7,2 % суточного потребления:

 

Wр = Qсут max * 7,2/100 = 58500*7,2/100 = 4212 м3

 

Емкость баков водонапорных башен определяют из условия неблагоприятной работы всей системы, то есть исходя из предположения, что пожары происходят в часы наибольшего водопотребления и что расходование воды для собственных целей очистной станции (промывка фильтров) не прекращается.

Емкость баков водонапорных башен определяется как сумма регулирующей емкости и объема воды, необходимой для тушения в течении 10 минут одного внутреннего и одного наружного пожара:

 

Wб = Wр + (qп +2*2,5)*10*60/1000, м3

Wб = 4212+(40+5)*10*60/1000 = 4239 м3

 

Принимаем две водонапорные башни.

Емкость одного регулирующего бака составит

 

Wбо = 2119,5 м3

 

Геометрические размеры бака определяют из рекомендуемого соотношения высоты и диаметра бака: Но = 0,7 Дб.

Тогда Wбо =( p Дб2/4)* Но = ( p Дб2/4)*0,7 Дб;

Wбо = 0,55Дб3;

Дб = м

Диаметр бака одной башни Дб = 15,7 м.

Высота бака Но = 11 м

Емкость резервуаров чистой воды на станции очистки

 

Wрез = Wр +Wп +Wф + 3 qч max – 3*2,3/100 Qсут max,

Где Wф – объем воды, необходимый для собственных нужд очистной станции      ( на промывку фильтров) в течение 3 часов:

Wф = 3(0,05-0,08) Qсут max/24

Wрез = 4212+1458+3*0,05*2437,5+3*3217,5-3*2,3/100*58500 =14342м3

 

С другой стороны, емкость резервуаров чистой воды определяется соотношением режимов работы насосных станций 1 и 2 подъема. Накопление чистой воды в резервуарах происходит в период с 1900 до 500. За это время (10 часов) насосы 1 подъема подадут объем воды, равный 0,023*58500*10=

13455 м3; насосы 2 подъема  подадут из резервуаров в сеть объем воды, равный 0,03*58500*10 =17550 м3. Необходимый объем резервуаров чистой воды

Wрез = 13455-17550=-4095 м3

Принимаем больший объем – 14342 м3

1.3 Построение пьезометрической линии.

Подбор насосов 2 подъема.

Минимальный свободный напор в сети водопровода при максимальном хозяйственно-питьевом потреблении на вводе в здание должен приниматься при одноэтажной застройке не менее 10 м. При большей этажности на каждый этаж следует добавлять 4 м.

 

Нсв=10+4(Э-1)

Где Э – этажность застройки.

В нашем примере Нсв = 10+4*(5-1)=26 м

Диктующей точкой является точка a.

Пьезометрическая линия характеризует падение напора в сети в часы максимального водопотребления. Когда из-за движения воды по водоводу появляются потери напора по длине.

Высоту водонапорной башни (высота расположения дна бака башни) определяют из соотношения высот:

 

Нб+Zб= Zасв+hба,

Нб= Нсв+hба-( Zб– Zа),

Где hба – потери напора на участке от башни до диктующей точки a;

hба=i*lба; i=(5-8)м вод.ст. на 1 км.

В нашем примере

 

Нб=26+8*0,5-(50-38)=18м

Пьезометрическая линия от насосной станции 2 подъема до башни определяют необходимый напор насосов 2 подъема из соотношения

 

Zн||-hнб=Zб+ Нбо,

Н||=( Zб– Zн)+( Нбо)+ hнб+(2-2,5)

Где (2-2,5) – потери набора во внутренних коммуникациях насосной станции.

В нашем примере

 

Н||=50-35+18+7,7+8*1,5+2,4=55,1 м вод. ст.

 

Подбор насосов станции 2 подъема

 

Насосы подбирают по каталогам центробежных насосов для чистых жидкостей по требуемым производительности (подачи) и напору.

Из совмещенного графика водопотребления и режимов насосных станций следует, что в час максимального водопотребления (с 8 до 9 часов) подача воды насосами 2 подъема составляет 5 % от суточного хозяйственно-питьевого потребления.

С учетом пожарного водопотребления насосы второго подъема должны обеспечить подачу

 

Q||=0,05 Qсут max+Qп.ч.

Q||=0,05*58500+486=3411»3400 м3

Примем 4 насоса, тогда каждый насос должен подавать 850 м3/ч при 55,1м вод.ст.

По каталогам подбираем марку насоса.

Требованиям удовлетворяет насос Д1250-65 (12 НДс) с параметрами: подача 1250 м3/ч, напор – 65м вод.ст., мощность двигателя – 320кВт, масса агрегата – 3613 кг.

ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

 

2.1. Качество воды и основные методы ее очистки

 

Качество природной воды зависит от наличия в ней различных веществ неорганического и органического происхождения.

Содержание в воде нерастворенных веществ характеризуется мутностью в мг на литр.

Присутствие в воде гумусовых веществ характеризуется цветностью в градусах по так называемой платинокобальтовой шкале.

Содержащиеся в воде соли кальция и магния придают ей жесткость.

Загрязненность воды бактериями характеризуются количеством бактерий, содержащихся в 1 куб.см. воды.

Методы очистки воды зависят от качества природной воды, потребляемого расхода и требований к ее качеству. При очистке речной воды для хозяйственно-питьевых нужд наиболее широко применяют осветление, обесцвечивание и обеззараживание воды (дезинфекция).

Более глубоко и более эффективно осветление воды происходит при коагулировании и пропуске через «взвешенный слой» хлопьев, ранее отделенных от воды в осветлителях.

Для глубокого осветления воды применяют ее фильтрование через песчаные фильтры.

Коагулирование с последующим отстаиванием и фильтрованием, а затем хлорированием воды применяют также для устранения цветности и снижения окисления воды.

Обеззараживание воды производят хлорированием, озонированием, ультрафиолетовым облучением.

Для снижения жесткости (умягчения), обессоливания и дегазации воды применяют химические и физико-химические методы обработки воды. Их применяют одновременно с отстаиванием и фильтрованием.

 

 

 

2.2. Выбор технологической схемы очистки воды

 

В процессе очистки вода должна пройти ряд очистных сооружений, в которых осуществляются принятые методы очистки.

Наиболее распространенные технологические схемы очистки речной воды для хозяйственно-питьевых целей.

  1. Глубокое осветление, обесцвечивание и обеззараживание воды путем коагулирования и последовательного осветления воды в отстойниках и на фильтрах. Природная вода насосами 1 подъема 1 подается в смеситель 3, куда одновременно подаются реагенты, приготовленные в реагентном цехе 2. После смешения с реагентами вода поступает в камеру хлопьеобразования 4, где происходит процесс агломерации взвешенных (мутность) и коллоидальных (цветность) частиц в крупные хлопья. Затем вода поступает в отстойники 5, в которых движется с малой скоростью (2-10 мм/с). При этом основная масса образовавшихся хлопьев отделяется от обрабатываемой воды и выпадает в осадок. Из отстойников воду подают на фильтры 6 для глубокого осветления путем пропуска ее через толщу песчаной загрузки. В процессе очистки в толще фильтров накапливаются загрязнения. Для их удаления фильтры выключают из работы и промывают.

Осветленную воду обеззараживают и собирают в резервуарах чистой воды 7, где обеззараживание завершается в результате контакта с дезинфекторами (хлором, озоном).

Вода, подаваемая в сеть, не должна содержать озона, так как он вызывает коррозию труб и оборудования. Поэтому воду, обработанную озоном, выдерживают в резервуарах до завершения расходования озона.

  1. На рисунке 4 также показана схема глубокого осветления, обесцвечивания и обеззараживания воды.

Отличие от ранее описанной схемы состоит в том, что в ней отстойники заменены осветлителями, при применении которых отпадает необходимость в устройстве камеры хлопьеобразования. Процесс коагуляции взвесей и осветления воды происходит во взвешенном слое осадка.

  1. Технологическая схема, представленная на рисунке 5, имеет лишь одно сооружение для осветления воды – контактные осветлители (песчаные фильтры с движением воды снизу вверх).

В них коагуляция взвесей и осветление воды происходит одновременно. Укрупнение частиц в хлопья происходит не в свободном объеме, а на поверхности зерен фильтрующего материала под действием сил прилипания (контактная коагуляция). Общий объем очистных сооружений по этой схеме значительно меньше, чем по предыдущим. Эту схему можно применять при малом содержании в воде взвешенных веществ – до 150-200 мг/л.

По рассмотренным технологическим схемам обесцвечивание воды происходит в результате сорбции коллоидных гумусовых веществ, обусловливающих цветность воды.

При выборе сооружений для осветления и обесцвечивания воды рекомендуется руководствоваться данными.

В соответствии с моими исходными данными: мутность – 200 мг/л; цветность – 100 град;  по приложению выбираем  для обработки воды с применением коагулянтов и флокулянтов контактные осветлители

Как правило, на очистных станциях применяют не менее двух сооружений каждого типа. Этим обеспечивается непрерывность работы очистных станций при авариях и эксплуатационных отключениях сооружений.

Взаимное высотное расположение сооружений предусматривают с таким расчетом, чтобы движение воды от сооружения к сооружению было самотечным. Разность отметок уровней воды в расположенных рядом сооружениях должна быть равна потерям напора при движении воды между сооружениями по трубопроводам и лоткам, а также в самих сооружениях.

Общие потери напора по технологической схеме обычно составляют 3,5-6 м.

 

 

  • Реагентное хозяйство

 

 

Коагулирование осуществляют для ускорения процесса осветления и обесцвечивания воды.

Дозу коагулянта Дк, мг/л, в расчете на Al2(SO4)3, FeCl3, Fe2(SO4)2 (по безводному веществу) принимают для мутных вод по таблице, для цветных вод – по формуле.

 

Дк=4*Ц

 

Где Ц – цветность обрабатываемой воды, град.

При одновременном содержании в воде взвешенных веществ и цветности принимают большую из доз коагулянта.

Дозу флокулянтов (в дополнение к дозам коагулянтов) слудует принимать:

полиакриламида (ППА) по безводному продукту при вводе перед отстойниками по таблице.

Флокулянт вводят в воду после коагулянта.

Дозу хлорсодержащих реагентов (по активному хлору) при предварительном хлорировании и для улучшения хода коагуляции и обесцвечивания воды, а также для улучшения санитарного состояния сооружений следует принимать 3-10 мг/л. Реагенты вводят за 1-3 мин до ввода коагулянтов.

Дозы подщелачивающих реагентов Дщ, мг/л, необходимых для улучшения процесса хлопьеобразования, определяют по формуле:

 

Дщщкк – Що) + 1

 

Где Дк – максимальная, в период подщелачивания, доза безводного коагулянта, мг/л; ек – эквивалентная масса коагулянта (безводного), мг/мг-экв, принимаемая для Al2(SO4)3 –  57; , FeCl3 – 54; Fe2(SO4)2 – 67; Кщ – коэффициент, равный для извести (по СаО) – 28; для соды (по Na2CO3) – 53; Що – минимальная щелочность воды, мг-экв/л.

Реагенты вводят одновременно с вводом коагулянтов.

Потребность в реагентах для моего примера:

Доза коагулянта Al2(SO4)3

  • по таблице Дк =30-40 мг/л;
  • по формуле Дк=4*100=400 мг/л,

принимаем Дк=400 мг/л

 

Потребность в сутки максимального водопотребления

 

Ск = 1,05 Qсут max Дк/1000=1,05*58500*400/1000=24570 кг.

 

Здесь 0,05 Qсут max – объем воды, необходимый для собственных нужд очистной станции.

Доза флокулянта (ПАА) – по таблице.

ДПАА=0,2-0,5 мг/л, принимаем  ДПАА=0,4 мг/л.

Потребность в сутки максимального водопотребления

 

СПАА=1,05 Qсут max* ДПАА/1000=1,05*58500*0,4/1000=24,57 кг.

 

Доза хлорсодержащих реагентов (по активному хлору) при предварительном хлорировании

ДCl=3-10 мг/л, принимаем ДCl=5 мг/л.

Потребность хлорсодержащих реагентов (по активному хлору) в сутки максимального водопотребления:

 

СCl=1,05 Qсут max* ДCl/1000=1,05*58500*5/1000=307,13 кг

 

Доза подщелачиваемых реагентов (извести)

Дщ=28(30/57-0,2)+1=10 мг/л.

Потребность в сутки максимального водопотребления

 

Сщ=1,05 Qсут max* Дщ/1000=1,05*58500*10/1000=614,25 кг.

2.4. Обеззараживание воды

Методы обеззараживания воды составляют четыре основные группы: термический(кипячение), химический (хлор, озон), олигодинамический (воздействие ионов благородных металлов) и физический (ультразвук, ультрафиолетовые лучи).

Наибольшее распространение получили методы второй группы. В качестве окислителей используют хлор, двуокись хлора, озон, иод, перманганат калия, перекись водорода, гипохлорит натрия и кальция. Из перечисленных окислителей на практике отдают предпочтение хлору, озону, гипохлориту натрия.

Хлор опасен при транспортировании и использовании, его утечки могут вызвать отравление людей. Кроме того, при хлорировании образуются хлорорганические соединения, в том числе – диоксин – сильнейший мутаген. При наличии в воде фенолов образуются хлорфенолы, обладающие токсичными свойствами и неприятным запахом.

Достоинство озонирования в том, что, уничтожая, бактерии, споры, вирусы, он разрушает растворенные и взвешенные в воде органические вещества. Это позволяет использовать озон не только для обеззараживания, но и для обесцвечивания и дезодорации воды. При этом природные свойства воды не изменяются. Избыток озона (в отличие от хлора) не только не ухудшает, но и значительно улучшает качество воды – устраняет цветность, привкусы и запахи.

Для обеззараживания воды выбираем метод озонирования. В случае только обеззараживания фильтрованной воды доза озона составляет 1-2 мг/л. Если же озон применяется для обесцвечивания и обеззараживания воды, его доза может достигать 4-5 мг/л.

2.5. Выбор технологического оборудования станции очистки воды

Технологическое оборудование выбирают на основе принятой технологической схемы очистки воды.

Для нашего  примера в соответствии с выбранной технологической схемой очистки воды схема глубокого осветления, обесцвечивания и обеззараживания воды потребуется следующее оборудование (рис. 4).

Для приготовления и дозирования реагентов примем растворные баки конической или пирамидальной формы. Средняя производительность очистной станции в  нашем примере позволяет расходные баки реагентов совместить с расходными.

Природная вода насосами 1 подъема подается в смеситель, куда одновременно подаются реагенты, приготовленные в реагентном цехе.

Тщательное перемешивание очищаемой воды, необходимое для полной обработки, осуществляем в вертикальном смесителе цилиндроконической формы. Смешивание воды и реагентов происходит в период подъема воды кверху (завихрения при расширении потока). Объем смесителя определяется из условия пребывания в нем воды в течение 1,5-2 мин.

Из смесителя вода подается в осветлитель со взвешенным осадком. Это камера хлопьеобразования, где происходит процесс агломерации взвешенных (мутность) и коллоидальных (цветность) частиц в крупные хлопья. Это фильтрованный аппарат, работающий на принципе контактной коагуляции. Он выполняет функции сооружений хлопьеобразования, отстаивания и фильтрования. При применении контактных осветлителей объемы сооружений уменьшаются в 4-5 раз по сравнению с объемами сооружений обычного типа. Расход коагулянта уменьшается на 15-20 %.

Из осветлителя воду подают на фильтры для глубокого осветления путем пропуска ее через толщу песчаной загрузки. Обрабатываемая вода, смешанная с реагентами, через распределительную систему вводится в фильтровые баки и фильтруется сверху вниз, где происходит оседание крупных зерен. В процессе очистки в толще фильтров накапливаются загрязнения. Для их удаления фильтры выключают из работы и промывают. На водоочистных комплексах перед осветлителями предусматривают барабанные сита, обеспечивающие частичное удаление  из воды взвешенных веществ, смешение и контакт воды с реагентами, а также выделение из воды воздуха. Фильтрующая песчаная нагрузка имеет крупность 0,7-5 мм, высоту слоя 2,5-2,6 м, расчетная скорость фильтрования 5-6 м/ч. Продолжительность фильтроцикла – не менее 8 ч.

Промывка осветлителей воздушная. Воздух подают с интенсивностью 18-20 л/(с-м2) через распределительную систему. Режим промывки: подача воздуха – 1-1,5 мин, водовоздушная промывка с интенсивностью подачи воды 2-3 л/(с-м2) – 6-7 мин. И последующая промывка водой 6-7 л/(с-м2) 4-6 мин.

Озон для обеззараживания воды получают в озонаторах непосредственно на водоочистной станции. Воздух, поступающий в озонатор, предварительно очищают от пыли, влаги и охлаждают. Озон подают в воду или с помощью эжекторов (эмульсаторов) или через сеть распределительных каналов, укладываемых по дну контактных резервуаров. Вода, подаваемая в сеть, не должна содержать озона (опасность коррозии труб и оборудования). В связи с этим воду, обработанную озоном, выдерживают в резервуарах до завершения расходования озона.

Технологическая схема озонаторной установки включает:

  • фильтры первичной очистки воздуха
  • воздуходувки
  • теплообменники (удаление влаги и снижение температуры)
  • маслоотделитель
  • адсорбер влаги (силикагель)
  • фильтры окончательной очистки воздуха
  • котлы-озанаторы

 

Осветленную и обеззараженную воду собирают в резервуарах чистой воды, где обеззараживание завершается в результате контакта с дезинфекторами (хлором, озоном).

Заключение

В настоящий момент в появилось много усовершенствованных технологий, участвовавших в процессе водоснабжения. В особенности технологии по очистке, обработке воды от бактериологических загрязнений и придания ей хороших органолептических свойств.

При достаточном финансировании этой отрасли можно надеяться на ее развитие, совершенствование технологий.

Приложение

Список литературы

  1. Илясов Г.И. Водоснабжение и водоотведение: учебное пособие. Саратов, 1994 г.
  2. Николадзе Г.И. Коммунальное водоснабжение и канализация. М: Стройиздат, 1983 г.
  3. СНиП 2.04.02-84. Водоснабжение. Наружные сети и сооружения/Госстрой СССР. М: Стройиздат, 1985г.

Содержание

Введение

Расчетная часть

Нормы и режимы водопотребления

Определение объема баков водонапорных башен и резервуаров чистой воды

Построение пьезометрической линии. Подбор насосов 2 подъема

Технологическая часть

Качество воды и основные методы ее очистки

Выбор технологической схемы очистки воды

Реагентное хозяйство

Обеззараживание воды

Выбор технологического оборудования станции очистки воды

Заключение

Приложение

Список литературы

Нашли опечатку? Выделите и нажмите CTRL+Enter

Похожие документы
Обсуждение

Оставить комментарий

avatar
  Подписаться  
Уведомление о
Заказать реферат
UkrReferat.com. Всі права захищені. 2000-2019