.

Сверхбольшие интегральные схемы (курсовая)

Язык: русский
Формат: курсова
Тип документа: Word Doc
81 1614
Скачать документ

Министерство образования и науки РФ

Государственное образовательное учреждение ВПО

«КАБАРДИНО-БАЛКАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им Х.М. БЕРБЕКОВА»

Факультет микроэлектроники и компьютерных технологии

Курсовая работа

По физическим основам микроэлектроники

Тема: Сверхбольшие интегральные схемы.

Преподаватель:

Хамдохов З. М.

Студент: Алероев М.А.

 

Нальчик 2010

 

Содержание

 

Введение…………………………………………………………………………………………………….3

Глава 1. СБИС программируемой логики (пл.)…………………………………………….6

Глава 2. Микропроцессоры……………………………………………………………………….12

Глава 3. Матричные микропроцессоры………………………………………………………19

3.1 Матричные микропроцессоры……………………………………………………………..19

3.2 Транзисторные матрицы………………………………………………………………………19

3.3 Матричные процессоры……………………………………………………………………….20

Глава 4. Автоматизированное проектирование СБИС………………………………..25

4.1 Основные типы БМК……………………………………………………………………………27

4.2 Реализация логических элементов на БМК…………………………………………..30

4.3 Системы автоматизированного проектирования матричных БИС, постановка задачи проектирования……………………………………………………………31

Заключение……………………………………………………………………………………………….34

Литература……………………………………………………………………………………………….35

 

 

Введение

 

С момента появления первых полупроводниковых микросхем (начало 60-х годов) микроэлектроника прошла путь от простейших логических элементов до сложных цифровых устройств, изготавливаемых на одном полупроводниковом монокристалле площадью около 1 см2. Для обозначения микросхем со степенью интеграции выше 104 элементов на кристалле в конце 70-х годов появился термин “сверхбольшие интегральные схемы” (СБИС). Уже через несколько лет развитие этих микросхем стало генеральным направлением в микроэлектронике. В начале своего развития электронная промышленность представляла собой отрасль техники, целиком основанную на операциях сборки, и позволяла реализовать весьма сложные функции путем объединения множества элементов в одном изделии. При этом значительная часть прироста стоимости изделий была связана с процессом сборки. Основными этапами этого процесса являлись этапы проектирования, выполнения и проверки соединений между электронными компонентами. Функции и размеры устройств, которые могли быть реализованы на практике, ограничивались количеством используемые компонентов, их физическими размерами и надежностью. Исторически сложилось так, что первоначально внимание к ИС привлекли такие их особенности, как малые размеры и масса, а затем развитие техники ИС, позволяющей скомпоновать на поверхности кристалла значительное количество элементов, включая меж соединения, постепенно привело к возможности создания СБИС. Т.о. стало возможным не только “повышение экономичности” электронных схем, но и улучшение их характеристик с одновременным повышением надежности. Развитие техники и технологии СБИС обусловило весьма существенные вменения в специфике электронной промышленности, заключающееся в совершенствовании процесса изготовления ИС и методов их проектирования. Типичным фактором первой группы является совершенствование микро технологии. Уменьшение размеров полупроводниковых приборов позволяет одновременно добиться как улучшения характеристик ИС, формально определяемых законом пропорциональности размеров, так и улучшения их экономических (материальных и энергетических) показателей, связанных с уменьшением площади кристалла.

Исторически первым полупроводниковым материалом, использованным на ранних стадиях разработки полупроводниковых приборов, был германий. Совершенствование германиевой технологии сделало возможным создание ряда приборов, включая германиевые точечные и сплавные транзисторы. Однако вскоре германий был заменен кремнием, обладающим таким важным свойством, как возможность получения в окислительной среде тонкого, прочного и влагонепроницаемого диэлектрического слоя аморфной двуокиси кремния (SiO2).

В технологии СБИС степень интеграции превышает 215 элементов на кристалл. Уровень миниатюризации, который был использован при производстве процессора Intel Pentium в 1993 году, составлял 0,8 мкм, сейчас используются транзисторы с длиной канала 0,18 мкм, а в перспективе – разработка устройств с длиной канала в 0,13 мкм, что в плотную приближается к пределу физических ограничений на работу такого рода транзисторов.

Технология создания и получения сверхбольших интегральных схем с минимальными размерами в глубокой субмикронной области (0,25- 0,5 мкм к 2000 году) и наноэлектроника (полупроводниковые приборы с размерами рабочих областей до 100 нм к 2010 году) включают следующие основных направления:

технологию сверхбольших кремниевых схем с минимальными размерами в глубокой субмикронной области; технологию сверхскоростных гетеропереходных приборов и интегральных схем на основе арсенида галлия, германия на кремнии и других соединений; технологию получения наноразмерных приборов, включая нанолитографию. При реализации этих направлений предусматривается создание сверхчистых монокристаллических полупроводниковых материалов и технологических реагентов, включая газы и жидкости; обеспечение сверх чистых производственных условий (по классу 0,1 и выше) в зонах обработки и транспорта пластин; разработка технологических операций и создание комплекса оборудования на новых физических принципах, в том числе кластерного типа, с автоматизированным контролем процессов, обеспечивающим заданную прецизионность обработки и низкий уровень загрязнения, а также высокую производительность процессов и воспроизводимость результатов, качество и надежность электронных элементов. Технология сверхбольших интегральных схем обеспечивает разработку и промышленное освоение выпуска широкой номенклатуры интегральных схем, составляющих элементную базу высокопроизводительных ЭВМ, специализированной и бытовой радиоэлектронной аппаратуры, средств связи и телекоммуникаций, в том числе космического базирования. При данной технологии возможные минимальные рабочие размеры составляют 0,1-0,5 мкм и менее (до 70 нм к 2010 году), достигаются высокая производительность за счет использования пластин большого диаметра (200 и более мм) и полной автоматизации процессов, значительный процент выхода годных электронных приборов и высокая окупаемость вкладываемых в производство средств.

 

 

Глава 1. СБИС программируемой логики (пл.)

 

Отечественным производителям электронной техники трудно конкурировать с зарубежными фирмами в области массового производства товаров широкого потребления. Однако в области разработки и создания сложной наукоемкой продукции в России сохранились условия, кадры, научный потенциал. Большое число предприятий и учреждений способно разрабатывать уникальные электронные устройства. Высокотехнологичным “сырьем” для таких разработок в области цифровой электроники служат легко доступные на отечественном рынке электронные компоненты: микропроцессоры, контроллеры, СБИС памяти и др. – все, что позволяет решать задачи специальной обработки сигналов и вычислений программным путем (со свойственными программной реализации достоинствами и недостатками). Микропроцессорная техника давно и прочно укоренилась в отечественных разработках. Однако в последние годы появилась новая элементная база – СБИС программируемой логики (programmable logic device – PLD), которая, удачно дополняя и заменяя микропроцессорные средства, в ближайшие годы станет “настольным материалом” для разработчиков. СБИС ПЛ оказываются вне конкуренции в областях, где требуется создание высокопроизводительных специализированных устройств, ориентированных на аппаратную реализацию. Аппаратное решение задач обеспечивает распараллеливание процесса обработки и увеличивает производительность в десятки раз по сравнению с программным решением, а использование СБИС ПЛ, в отличие от специализированных СБИС, обеспечивает такую же гибкость реализации, как у любых программных решений. В последние годы динамика развития и производства СБИС ПЛ. уступает только микросхемам памяти и превышает 50% в год.

СБИС ПЛ представляют собой полузаказную СБИС и включают реализованные на кристалле универсальные настраиваемые пользователем функциональные преобразователи и программируемые связи между этими преобразователями. По сравнению с базовыми матричными кристаллами (БМК) использование СБИС ПЛ обеспечивает существенно более короткий цикл разработки, экономический выигрыш при мелкосерийном (до нескольких тысяч изделий) производстве и возможность внесения изменений в проект на любом этапе разработки. Заказную СБИС или БМК разработают для Вашего уникального проекта за несколько месяцев. Но только на СБИС ПЛ Вы запрограммируете его сами за кратчайшее время и с минимальными затратами. Разработчик специализированного цифрового устройства, используя средства САПР СБИС ПЛ, в привычной ему форме (схемы, текстовое описание) задает требуемое устройство и получает программирующий СБИС ПЛ файл, который используется при программировании на программаторе или непосредственно на плате. Программирование заключается в задании нужных свойств функциональным преобразователям и установлении необходимых связей между ними. Программируемые элементы – электронные ключи. Такой цикл проектирования/изготовления занимает незначительное время, изменения могут вноситься на любой стадии разработки за считанные минуты, а внедрение новых средств проектирования на начальном этапе практически не требует материальных затрат.

Производители, архитектура и возможности существующих в настоящее время типов СБИС ПЛ разнообразны. Систематизация микросхем гибкой логики производится обычно по следующим классификационным признакам: степень интеграции (логическая емкость);

архитектура функционального преобразователя;

организация внутренней структуры СБИС и структуры матрицы соединений функциональных преобразователей;

тип используемого программируемого элемента;

наличие внутренней оперативной памяти.

Степень интеграции (логическая емкость) – наиболее важная характеристика СБИС ПЛ, по которой осуществляется выбор. Производители СБИС ПЛ стоят на передовых рубежах электронной технологии (текущая рабочая проектная норма составляет 0,25 мкм), и число транзисторов в СБИС ПЛ большой емкости составляет десятки миллионов. Но ввиду избыточности структур, включающих большое число коммутирующих транзисторов, логическую емкость измеряют в эквивалентных логических вентилях типа 2И-НЕ (2ИЛИ-НЕ), которые понадобилось бы для реализации устройств той же сложности, что и на соответствующих СБИС. Основные производители СБИС ПЛ – фирмы Altera (34% мирового объема продаж), Xilinx (33%), Actel (9%). Максимальная логическая емкость достигнута в настоящее время в СБИС ПЛ, выпускаемых фирмой Altera (семейства FLEX10K), и составляет 250000 логических вентилей, а к концу 1998 г. достигнет 1 миллиона (количественные данные приведены по состоянию на 01.06.98 г.).

Функциональные преобразователи СБИС ПЛ включают в себя настраиваемые средства реализации логических функций и триггер (т.е. являются простым конечным автоматом). Наиболее часто логические функции реализуются в виде суммы логических произведений (sum of product) либо на шестнадцатибитных ПЗУ (таблицы перекодировки). СБИС ПЛ с функциональными преобразователями на базе сумм термов, позволяют проще реализовывать сложные логические функции, а на базе таблиц перекодировки создавать насыщенные триггерами устройства.

Организация внутренней структуры СБИС и структуры матрицы соединений функциональных преобразователей – основной отличительный признак различных СБИС ПЛ.

На рис.1 Показано разделение наиболее популярных СБИС ПЛ по этим признакам.

 

 

Большинство фирм выпускает сложные СБИС ПЛ, располагая функциональные преобразователи в горизонтальных рядах и вертикальных столбцах в виде квадратной матрицы на площади кристалла, тогда как связи между преобразователями выполняются в виде проводников, разделенных на отдельные участки (сегменты) электронными ключами. Такая одноуровневая структура получила название FPGA (Field Programmable Gate Array). Иерархическая (многоуровневая) организация СБИС ПЛ позволяет улучшить их технические характеристики. При многоуровневой организации функциональные преобразователи группируются в блоки (например, в СБИС семейств FLEX10K фирмы Altera в логический блок входит 8 функциональных преобразователей), имеющие свою собственную локальную шину межсоединений. Блоки обмениваются сигналами друг с другом через шины межсоединений верхнего уровня. Структура такого типа показана на рис.4. Проводники межсоединений изготавливаются непрерывными (т.е. без разделения на сегменты электронными ключами), что обеспечивает малые задержки распространения сигналов и позволяет существенно сократить количество электронных ключей. Кроме того, непрерывные линии межсоединений обеспечивают возможность взаимной замены логических блоков без изменения временной модели устройства, что существенно ускоряет процедуру размещения проекта на кристалле и упрощает временное моделирование.

 

 

Тип используемого программируемого элемента – электронного ключа, определяет возможности СБИС ПЛ. по программированию, перепрограммированию и хранению конфигурации при отключении питания. Наиболее перспективны программируемые элементы, выполненные по EEPROM и FLASH технологии (полевые транзисторы с плавающим затвором), обеспечивающие энергонезависимое хранение конфигурации и многократное перепрограммирование (в том числе и распаянной микросхемы непосредственно на плате), и элементы, выполненные по SRAM технологии, т.е. представляющие собой электронный ключ и триггер оперативной памяти, в который при включении питания должна быть записана конфигурирующая информация. SRAM – технология обеспечивает меньшее энергопотребление и позволяет реконфигурировать СБИС ПЛ за десятки миллисекунд, обеспечивая исходную загрузку конфигурирующей памяти и, при необходимости, реконфигурирование <налету> для адаптации структуры реализуемого устройства. Особое место занимает ряд семейств СБИС ПЛ, выпускаемых фирмой Actel и имеющих программируемые элементы – antifuse, представляющие собой pn – переходы, пробиваемые при программировании. Эти СБИС ПЛ имеют высокую стойкость к хранению конфигурации при спецвоздействиях, но не получили широкого распространения в силу их высокой стоимости и однократности программирования. Наличие внутренней оперативной памяти дает пользователю СБИС ПЛ. дополнительные возможности при разработке цифровых систем. СБИС ПЛ. с внутренней памятью выпускаются фирмами Altera (семейства FLEX10K), Atmel (семейство AT40K), Xilinx (семейства XC4000). Организация внутренней памяти в СБИС ПЛ различных производителей различна. В семействе FLEX10K фирмы Altera – это крупные выделенные модули памяти объемом 2 Кбит, в СБИС других производителей – распределенные по кристаллу небольшие блоки. Например, в СБИС фирмы Xilinx – теневые ОЗУ таблиц перекодировки объемом 32 бита, в СБИС ПЛ фирмы Atmel – расположенные в узлах матрицы межсоединений блоки памяти объемом 32х4 бита. Возможности СБИС ПЛ чрезвычайно широки и удовлетворяют различным требованиям разработчиков цифровых устройств. На рис.8 показаны семейства СБИС ПЛ, выпускаемых фирмой Altera – лидером в производстве СБИС ПЛ. Семейства FLEX (SRAM технология конфигурирующих элементов) выпускаются в корпусах с числом выводов до 600, требуют загрузки конфигурации каждый раз при включении питания или при необходимости внесения изменений в функционирование СБИС, но обладают существенно большей логической емкостью по сравнению с энергонезависимыми семействами MAX и меньшим энергопотреблением на функциональный преобразователь. Семейства MAX могут обеспечить задержку сигнала до 5 нс., в то время как у семейств FLEX эта задержка не менее 8 нс. Наиболее перспективными семействами СБИС ПЛ фирмы Altera являются FLEX10K, FLEX6000, МАХ7000S,A.

 

 

Глава 2. Микропроцессоры

 

По числу больших интегральных схем (БИС) в микропроцессорном комплекте различают микропроцессоры однокристальные, многокристальные и многокристальные секционные. Процессоры даже самых простых ЭВМ имеют сложную функциональную структуру, содержат большое количество электронных элементов и множество разветвленных связей. Изменять структуру процессора необходимо так, чтобы полная принципиальная схема или ее части имели количество элементов и связей, совместимое с возможностями БИС. При этом микропроцессоры приобретают внутреннюю магистральную архитектуру, т. е. в них к единой внутренней информационной магистрали подключаются все функциональные основные блоки (арифметико-логический, рабочих регистров, стека, прерываний, интерфейса, управления и синхронизации и др.). Для обоснования классификации микропроцессоров по числу БИС надо распределить все аппаратные блоки процессора между основными тремя функциональными частями: операционной, управляющей и интерфейсной. Сложность операционной и управляющей частей процессора определяется их разрядностью, системой команд и требованиями к системе прерываний; сложность интерфейсной части разрядностью и возможностями подключения других устройств ЭВМ (памяти, внешних устройств, датчиков и исполнительных механизмов и др.). Интерфейс процессора содержит несколько десятков информационных шин данных (ШД), адресов (ША) и управления (ШУ). Однокристальные микропроцессоры получаются при реализации всех аппаратных средств процессора в виде одной БИС или СБИС (сверхбольшой интегральной схемы). По мере увеличения степени интеграции элементов в кристалле и числа выводов корпуса параметры однокристальных микропроцессоров улучшаются. Однако возможности однокристальных микропроцессоров ограничены аппаратными ресурсами кристалла и корпуса. Для получения многокристального микропроцессора необходимо провести разбиение его логической структуры на функционально законченные части и реализовать их в виде БИС (СБИС). Функциональная законченность БИС многокристального микропроцессора означает, что его части выполняют заранее определенные функции и могут работать автономно.

На рис. 2.а показано функциональное разбиение структуры процессора при создании трехкристального микропроцессора (пунктирные линии), содержащего БИС операционного (ОП), БИС управляющего (УП) и БИС интерфейсного (ИП) процессоров.

 

Рис. 2. Функциональная структура процессора (а) и ее разбиение для реализации процессора в виде комплекта секционных БИС.

 

Операционный процессор служит для обработки данных, управляющий процессор выполняет функции выборки, декодирования и вычисления адресов операндов и также генерирует последовательности микрокоманд. Автономность работы и большое быстродействие БИС УП позволяет выбирать команды из памяти с большей скоростью, чем скорость их исполнения БИС ОП. При этом в УП образуется очередь еще не исполненных команд, а также заранее подготавливаются те данные, которые потребуются ОП в следующих циклах работы. Такая опережающая выборка команд экономит время ОП на ожидание операндов, необходимых для выполнения команд программ. Интерфейсный процессор позволяет подключить память и периферийные средства к микропроцессору; он, по существу, является сложным контроллером для устройств ввода/вывода информации. БИС ИП выполняет также функции канала прямого доступа к памяти. Выбираемые из памяти команды распознаются и выполняются каждой частью микропроцессора автономно и поэтому может быть обеспечен режим одновременной работы всех БИС МП, т.е. конвейерный поточный режим исполнения последовательности команд программы (выполнение последовательности с небольшим временным сдвигом). Такой режим работы значительно повышает производительность микропроцессора. Многокристальные секционные микропроцессоры получаются в том случае, когда в виде БИС реализуются части (секции) логической структуры процессора при функциональном разбиении ее вертикальными плоскостями (рис. 2,б). Для построения многоразрядных микропроцессоров при параллельном включении секций БИС в них добавляются средства “стыковки”. Для создания высокопроизводительных многоразрядных микропроцессоров требуется столь много аппаратных средств, не реализуемых в доступных БИС, что может возникнуть необходимость еще и в функциональном разбиении структуры микропроцессора горизонтальными плоскостями. В результате рассмотренного функционального разделения структуры микропроцессора на функционально и конструктивно законченные части создаются условия реализации каждой из них в виде БИС. Все они образуют комплект секционных БИС МП. Таким образом, микропроцессорная секция это БИС, предназначенная для обработки нескольких разрядов данных или выполнения определенных управляющих операций. Секционность БИС МП определяет возможность “наращивания” разрядности обрабатываемых данных или усложнения устройств управления микропроцессора при “параллельном” включении большего числа БИС. Однокристальные и трехкристальные БИС МП, как правило, изготовляют на основе микроэлектронных технологий униполярных полупроводниковых приборов, а многокристальные секционные БИС МП на основе технологии биполярных полупроводниковых приборов. Использование многокристальных микропроцессорных высокоскоростных биполярных БИС, имеющих функциональную законченность при малой физической разрядности обрабатываемых данных и монтируемых в корпус с большим числом выводов, позволяет организовать разветвление связи в процессоре, а также осуществить конвейерные принципы обработки информации для повышения его производительности. По назначению различают универсальные и специализированные микропроцессоры. Универсальные микропроцессоры могут быть применены для решения широкого круга разнообразных задач. При этом их эффективная производительность слабо зависит от проблемной специфики решаемых задач. Специализация МП, т.е. его проблемная ориентация на ускоренное выполнение определенных функций позволяет резко увеличить эффективную производительность при решении только определенных задач. Среди специализированных микропроцессоров можно выделить различные микроконтроллеры, ориентированные на выполнение сложных последовательностей логических операций, математические МП, предназначенные для повышения производительности при выполнении арифметических операций за счет, например, матричных методов их выполнения, МП для обработки данных в различных областях применений и т. д. С помощью специализированных МП можно эффективно решать новые сложные задачи параллельной обработки данных. Например, конволюция позволяет осуществить более сложную математическую обработку сигналов, чем широко используемые методы корреляции. Последние в основном сводятся к сравнению всего двух серий данных: входных, передаваемых формой сигнала, и фиксированных опорных и к определению их подобия. Конволюция дает возможность в реальном масштабе времени находить соответствие для сигналов изменяющейся формы путем сравнения их с различными эталонными сигналами, что, например, может позволить эффективно выделить полезный сигнал на фоне шума. Разработанные однокристальные конвольверы используются в устройствах опознавания образов в тех случаях, когда возможности сбора данных превосходят способности системы обрабатывать эти данные. По виду обрабатываемых входных сигналов различают цифровые и аналоговые микропроцессоры. Сами микропроцессоры цифровые устройства, однако могут иметь встроенные аналого-цифровые и цифро-аналоговые преобразователи. Поэтому входные аналоговые сигналы передаются в МП через преобразователь в цифровой форме, обрабатываются и после обратного преобразования в аналоговую форму поступают на выход. С архитектурной точки зрения такие микропроцессоры представляют собой аналоговые функциональные преобразователи сигналов и называются аналоговыми микропроцессорами. Они выполняют функции любой аналоговой схемы (например, производят генерацию колебаний, модуляцию, смещение, фильтрацию, кодирование и декодирование сигналов в реальном масштабе времени и т.д., заменяя сложные схемы, состоящие из операционных усилителей, катушек индуктивности, конденсаторов и т.д.). При этом применение аналогового микропроцессора значительно повышает точность обработки аналоговых сигналов и их воспроизводимость, а также расширяет функциональные возможности за счет программной “настройки” цифровой части микропроцессора на различные алгоритмы обработки сигналов. Обычно в составе однокристальных аналоговых МП имеется несколько каналов аналого-цифрового и цифро-аналогового преобразования. В аналоговом микропроцессоре разрядность обрабатываемых данных достигает 24 бит и более, большое значение уделяется увеличению скорости выполнения арифметических операций. Отличительная черта аналоговых микропроцессоров способность к переработке большого объема числовых данных, т. е. к выполнению операций сложения и умножения с большой скоростью при необходимости даже за счет отказа от операций прерываний и переходов. Аналоговый сигнал, преобразованный в цифровую форму, обрабатывается в реальном масштабе времени и передается на выход обычно в аналоговой форме через цифро-аналоговый преобразователь. При этом согласно теореме Котельникова частота квантования аналогового сигнала должна вдвое превышать верхнюю частоту сигнала. Сравнение цифровых микропроцессоров производится сопоставлением времени выполнения ими списков операций. Сравнение же аналоговых микропроцессоров производится по количеству эквивалентных звеньев аналого-цифровых фильтров рекурсивных фильтров второго порядка. Производительность аналогового микропроцессора определяется его способностью быстро выполнять операции умножения: чем быстрее осуществляется умножение, тем больше эквивалентное количество звеньев фильтра в аналоговом преобразователе и тем более сложный алгоритм преобразования цифровых сигналов можно задавать в микропроцессоре. Одним из направлений дальнейшего совершенствования аналоговых микропроцессоров является повышение их универсальности и гибкости. Поэтому вместе с повышением скорости обработки большого объема цифровых данных будут развиваться средства обеспечения развитых вычислительных процессов обработки цифровой информации за счет реализации аппаратных блоков прерывания программ и программных переходов. По характеру временной организации работы микропроцессоры делят на синхронные и асинхронные. Синхронные микропроцессоры – микропроцессоры, в которых начало и конец выполнения операций задаются устройством управления (время выполнения операций в этом случае не зависит от вида выполняемых команд и величин операндов). Асинхронные микропроцессоры позволяют начало выполнения каждой следующей операции определить по сигналу фактического окончания выполнения предыдущей операции. Для более эффективного использования каждого устройства микропроцессорной системы в состав асинхронно работающих устройств вводят электронные цепи, обеспечивающие автономное функционирование устройств. Закончив работу над какой-либо операцией, устройство вырабатывает сигнал запроса, означающий его готовность к выполнению следующей операции. При этом роль естественного распределителя работ принимает на себя память, которая в соответствии с заранее установленным приоритетом выполняет запросы остальных устройств по обеспечению их командной информацией и данными. По организации структуры микропроцессорных систем различают микроЭВМ одно – и многомагистральные. В одномагистральных микроЭВМ все устройства имеют одинаковый интерфейс и подключены к единой информационной магистрали, по которой передаются коды данных, адресов и управляющих сигналов. В многомагистральных микроЭВМ устройства группами подключаются к своей информационной магистрали. Это позволяет осуществить одновременную передачу информационных сигналов по нескольким (или всем) магистралям. Такая организация систем усложняет их конструкцию, однако увеличивает производительность. По количеству выполняемых программ различают одно- и многопрограммные микропроцессоры. В однопрограммных микропроцессорах выполняется только одна программа. Переход к выполнению другой программы происходит после завершения текущей программы. В много- или мультипрограммных микропроцессорах одновременно выполняется несколько (обычно несколько десятков) программ. Организация мультипрограммной работы микропроцессорных управляющих систем позволяет осуществить контроль за состоянием и управлением большим числом источников или приемников информации.

 

 

Глава 3. Матричные микропроцессоры и автоматизация проектирования цифровых СБИС на базе матриц Вайнбергера и транзисторных матриц

 

3.1 Матричные микропроцессоры

 

Матричные микропроцессоры можно рассмотреть с двух сторон: на уровне транзисторных матриц и матриц процессоров.

Использование матриц при проектировании процессоров может быть двухсторонним: матрицы транзисторов для проектирования микропроцессоров и матрицы микропроцессоров для проектировании процессорных систем. Использование матриц при построении процессорных систем не ограничивается соединением процессоров по конвейерному принципу. Подобную архитектуру можно использовать также и при проектировании ИС с использованием транзисторных матриц, выполненных по МОП-технологии. Рассмотрим оба варианта применения матриц.

 

3.2 Транзисторные матрицы

 

Сокращение сроков проектирования микропроцессоров и повышение надежности проектов требуют применения соответствующих систем автоматизации проектирования. Одним из самых перспективных направлений в настоящее время считается подход к сквозной автоматизации проектирования, называемой кремниевой компиляцией, позволяющий исходное задание на проектирование – функциональное описание, представленное на языке высокого уровня, преобразовать в топологические чертежи. Кремниевые компиляторы используют в качестве базовых регулярные матричные структуры, хорошо приспособленные к технологии СБИС. Большое распространение получили программируемые логические матрицы (ПЛМ) и их различные модификации. Они ориентированы на матричную реализацию двухуровневых (И, ИЛИ) логических структур, а также для оптимизации их параметров (площади, быстродействия) известны различные методы. Реализация многоуровневых логических структур СБИС часто опирается на матричную топологию: в этом случае компиляторы генерируют топологию по ее матричному описанию

 

3.3 Транзисторные матрицы

 

Особым стилем реализации топологии в заказных КМОП СБИС являются транзисторные матрицы. В лэйауте (англ. layout – детальное геометрическое описание всех слоев кристалла) транзисторных матриц все p-транзисторы располагаются в верхней половине матрицы, а все n-транзисторы – в нижней. Транзисторные матрицы имеют регулярную структуру, которую составляют взаимопересекающиеся столбцы и строки. В столбцах матрицы равномерно расположены полосы поликремния, образующие взаимосвязанные затворы транзисторов. По другим полюсам транзисторы соединяются друг с другом сегментами металлических линий, которые размещаются в строках матрицы. Иногда, для того чтобы соединить сток и исток транзисторов, находящихся в различных строках, вводят короткие вертикальные диффузионные связи. В дальнейшем ТМ будет представляться абстрактным лэйаутом. Абстрактный лэйаут – схематический рисунок будущего кристалла, где прямоугольники обозначают транзисторы, вертикальные линии – поликремниевые столбцы, горизонтальные – линии металла, штриховые – диффузионные связи, точки – места контактов, стрелки – места подключения транзисторов к линиям Gnd и Vdd. При переходе к послойной топологии стрелки должны быть заменены полосками в диффузионном слое, по которому осуществляются соединения между строками ТМ.

На рис. 3.а представлена транзисторная схема, а на рис. 3.б – транзисторная матрица, реализующая данную схему.

 

Рис 3. Символическое представление топологии транзисторных матриц.

 

Одной из завершающих стадий получения топологии транзисторных матриц является переход от символического лэйаута к топологическому описанию схемы на уровне слоев. Символические лэйауты конструируются путем размещения символов не решетке, которая служит для создания топологии заданной схемы. Каждый символ представляет геометрию, которая может включать любое число масочных уровней. Схемотехника транзисторных матриц позволяет использовать небольшое число различных символов, требуемых для описания лэйаута:

N – n-канальный транзистор;

P – p-канальный транзистор;

+ – надпересечение – металл над диффузией; металл над поликремнием; пересекающиеся вертикальный и горизонтальный металлы;

– контакт (к поликремнию либо диффузии);

! – p-диффузия;

– n-диффузия, либо поликремний;

: – металл в вертикальном направлении;

– металл в горизонтальном направлении.

Каждый символ транзистора соответствует транзистору минимального размера. Однако ширина канала может увеличиваться многократным повторением символа. Только один символ “+” требуется для того, чтобы обозначить пересечение всех трех уровней взаимосвязей: а именно, металл над диффузией, металл над поликремнием и пересекающийся вертикальный и горизонтальный металлы. Символ контакта “” используется для того, чтобы определить контакт металла к поликремнию или диффузии. Символ “” используется для представления либо поликремневых, либо n-диффузионных проводников. Символ для диффузии p-типа “!” требуется для различия ее от диффузии n-типа, которая может существовать в том же столбце. Символы для металла “:” либо “-” обозначают вертикальные или горизонтальные линии металла соответственно. Если логическая схема построена на базе элементов, для которых нет транзисторных описаний в библиотеках, то возникает сложная задача получения требуемых представлений схемы, особенно, когда имеются дополнительные требования к параметрам – площади, быстродействию и т.д. Задача перехода от логического описания комбинационной логики в одном базисе к описанию в другом базисе в настоящее время решается по нескольким направлениям. Глобальная оптимизация. Сначала осуществляется переход к системе нормальных дизъюнктивных форм (ДНФ), которая обычно минимизируется, а затем представляется в виде многоуровневой логической сети, реализуемой в требуемом базисе. Основная оптимизация ведется при построении многоуровневой сети – обычно это сеть в базисе И, ИЛИ, НЕ, а основным критерием сложности является критерий числа литералов (букв) в символическом (алгебраическом) представлении булевых функций. Методы оптимизации опираются либо на функциональную декомпозицию, либо на факторизацию (поиск общих подвыражений) в алгебраических скобочных представлениях функций, реализуемых схемой. Заключительный этап – реализацию в требуемом базисе принято называть технологическим отображением. Именно на этом этапе можно оценить максимальную задержку схемы – задержку вдоль критического пути. Предполагается, что в узлах схемы установлены базисные элементы. Локальная оптимизация. Замена одних базисных логических операторов другими осуществляется путем анализа локальной области схемы. Поиск фрагментов и правила их замены другими может осуществляться с помощью экспертной системы. Так, например, устроена система LSS.5.3 Матричные процессоры Матричные процессоры наилучшим образом ориентированы на реализацию алгоритмов обработки упорядоченных (имеющих регулярную структуру) массивов входных данных. Они появились в середине 70-х годов в виде устройств с фиксированной программой, которые могли быть подключены к универсальным ЭВМ; но к настоящему времени в их программирования достигнута высокая степень гибкости. Зачастую матричные процессоры используются в качестве вспомогательных процессоров, подключенных к главной универсальной ЭВМ. В большинстве матричных процессоров осуществляется обработка 32-х разрядных чисел с плавающей запятой со скоростью от 5000000 до 50000000 флопс. Как правило они снабжены быстродействующими портами данных, что дает возможность для непосредственного ввода данных без вмешательства главного процессора. Диапазон вариантов построения матричных процессоров лежит от одноплатных блоков, которые вставляются в существующие ЭВМ, до устройств, конструктивно оформленных в виде нескольких стоек, которые по существу представляют собой конвейерные суперЭВМ. Типичными видами применения матричных процессоров является обработка сейсмической и акустической информации, распознавание речи; для этих видов обработки характерны такие операции, как быстрое преобразование Фурье, цифровая фильтрация и действия над матрицами. Для построения относительно небольших более экономичных в работе матричных процессоров используются разрядно модульные секции АЛУ в сочетании с векторным процессором, основанном на основе биполярного СБИС-процессора с плавающей запятой. Вероятно, в будущем матричные процессоры будут представлять собой матрицы процессоров, служащие для увеличения производительности процессоров сверх пределов, установленных шинной архитектурой. Для реализации обработки сигналов матрицы МКМД могут быть организованы в виде систолических или волновых матриц. Систолическая матрица состоит из отдельных процессорных узлов, каждый из которых соединен с соседними посредством упорядоченной решетки. Большая часть процессорных элементов располагает одинаковыми наборами базовых операций, и задача обработки сигнала распределяется в матричном процессоре по конвейерному принципу. Процессоры работают синхронно, используя общий задающий генератор тактовых сигналов, поступающий на все элементы. В волновой матрице происходит распределение функций между процессорными элементами, как в систолической матрице, но в данном случае не имеет места общая синхронизация от задающего генератора. Управление каждым процессором организуется локально в соответствии с поступлением необходимых входных данных от соответствующих соседних процессоров. Результирующая обрабатывающая волна распространяется по матрице по мере того, как обрабатываются входные данные, и затем результаты этой обработки передаются другим процессорам в матрице.

 

 

Глава 4. Автоматизированное проектирование СБИС на базовых матричных кристаллах, стандартные и полузаказные ИС, базовые кристаллы и типовые элементы

 

Характерной тенденцией развития элементной базы современной электронно-вычислительной аппаратуры является быстрый рост степени интеграции. В этих условиях актуальной становится проблема ускорения темпов разработки узлов аппаратуры, представляющих собой БИС и СБИС. При решении данной проблемы важно учитывать существование двух различных классов интегральных схем: стандартных (или крупносерийных) и заказных. К первым относятся схемы, объем производства которых достигает миллионов штук в год. Поэтому относительно большие затраты на их проектирование и конструирование оправдываются. Этот класс схем включает микропроцессоры, различного вида полупроводниковые устройства памяти (ПЗУ, ОЗУ и т.д.), серии стандартных микросхем и др. Схемы, принадлежащие ко второму классу, при объеме производства до нескольких десятков тысяч в год, выпускаются для удовлетворения нужд отдельных отраслей промышленности. Значительная часть стоимости таких схем определяется затратами на их проектирование. Основным средством снижения стоимости проектирования и, главное, ускорения темпов разработки новых видов микроэлектронной аппаратуры являются системы автоматизированного проектирования (САПР). В результате совместных действий конструкторов, направленных на уменьшение сроков и снижение стоимости проектирования БИС и СБИС, появились так называемые полузаказные интегральные микросхемы, в которых топология в значительной степени определяется унифицированной конструкцией кристалла. Первые схемы, которые можно отнести к данному классу, появились в 60-х годах. Они изготавливались на унифицированном кристалле с фиксированным расположением функциональных элементов. При этом проектирование заключалось в назначении функциональных элементов схемы на места расположения соответствующих функциональных элементов кристалла и проведении соединений. Такой кристалл получил название базового, поскольку все фотошаблоны (исключая слои коммутации) для его изготовления являются постоянными и не зависят от реализуемой схемы. Эти кристаллы, однако, нашли ограниченное применение из-за неэффективного использования площади кристалла, вызванного фиксированным положением функциональных элементов на кристалле. Для частичной унификации топологии интегральных микросхем (ИС) использовалось также проектирование схем на основе набора типовых ячеек. В данном случае унификация состояла в разработке топологии набора функциональных (типовых ячеек, имеющих стандартизованные параметры (в частности, разные размеры по вертикали). Процесс проектирования при этом заключался в размещении в виде горизонтальных линеек типовых ячеек, соответствующих функциональным элементам схемы, в размещении линеек на кристалле и реализации связей, соединяющих элементы, в промежутках между линейками. Ширина таких промежутков, называемых каналами, определяется в процессе трассировки. Отметим, что хотя в данном случае имеет место унификация топологии, кристалл не является базовым, поскольку вид всех фотошаблонов определяется в ходе проектирования. Современные полузаказные схемы реализуются на базовом матричном кристалле (БМК), содержащем не соединенные между собой простейшие элементы (например, транзисторы), а не функциональные элементы как в рассмотренном выше базовом кристалле. Указанные элементы располагаются на кристалле матричным способом (в узлах прямоугольной решетки). Поэтому такие схемы часто называют матричными БИС. Как и в схемах на типовых ячейках топология набора логических элементов разрабатывается заранее. Однако в данном случае топология логического элемента создается на основе регулярно расположенных простейших элементов. Поэтому в ходе проектирования логическими элемент может быть размещен в любом месте кристалла, а для создания всей схемы требуется изготовить только фотошаблоны слоев коммутации. Основные достоинства БМК, заключающиеся в снижении стоимости и времени проектирования, обусловлены: применением БМК для проектирования и изготовления широкого класса БИС; уменьшением числа детализированных решений в ходе проектирования БИС; упрощением контроля и внесения изменений в топологию; возможностью эффективного использования автоматизированных методов конструирования, которая обусловлена однородной структурой БМК. Наряду с отмеченными достоинствами БИС на БМК не обладают предельными для данного уровня технологии параметрами и, как правило, уступают как заказным, так и стандартным схемам. При этом следует различать технологические параметры интегральных микросхем и функциональных узлов (устройств), реализованных на этих микросхемах. Хотя технологические параметры стандартных микросхем малой и средней степени интеграции наиболее высоки, параметры устройств, реализованных на их основе, оказываются относительно низкими.

 

4.1 Основные типы БМК

 

Базовый кристалл представляет собой многослойную прямоугольную пластину фиксированных размеров, на которой выделяют периферийную и внутреннюю области (рис. 1). В периферийной области располагаются внешние контактные площадки (ВКП) для осуществления внешнего подсоединения и периферийные ячейки для реализации буферных схем (рис. 2). Каждая внешняя ячейка связана с одной ВКП и включает диодно-транзисторную структуру, позволяющую реализовать различные буферные схемы за счет соответствующего соединения элементов этой структуры. В общем случае в периферийной области могут находиться ячейки различных типов. Причем периферийные ячейки могут располагаться на БМК в различных ориентациях (полученных поворотом на угол, кратный 90′, и зеркальным отражением). Под базовой ориентацией ячейки понимают положение ячейки, расположенной на нижней стороне кристалла.

Во внутренней области кристалла матричным способом располагаются макроячейки для реализации элементов проектируемых схем (рис. 3). Промежутки между макроячейками используются для электрических соединений. При матричном расположении макроячеек область для трассировки естественным образом разбивается на горизонтальные и вертикальные каналы. В свою очередь в пределах макроячейки матричным способом располагаются внутренние ячейки для реализации логических элементов. Различные способы расположения внутренних ячеек и макроячейках показаны на рисунке. Причем наряду с размещением ячеек “встык” применяется размещение с зазорами, в которых могут проводиться трассы электрических соединений

Особенностью ячейки является специальное расположение выводов, согласованное со структурой макроячейки. А именно, ячейки размещаются таким образом, чтобы выводы ячеек оказались на периферии макроячейки. Так, в одной из макроячеек выводы каждой ячейки дублируются на верхней и нижней ее сторонах. При этом имеется возможность подключения к любому выводу с двух сторон ячейки, что создает благоприятные условия для трассировки. Последнее особенно важно при проектировании СБИС.В другой макроячейке выводы ячейки располагаются только на одной стороне, т. е. выводы ячеек верхнего ряда находятся на верхней стороне макроячейки, а нижнего на нижней. Применение таких макроячеек позволяет сократить требуемую площадь кристалла, но приводит к ухудшению условий для трассировки. Поэтому данный тип макроячеек используется лишь при степени интеграции, не превышающей 100 -200 вентилей на кристалл. Отметим, что в некоторых типах БМК, кроме однотипных макроячеек, во внутренней области могут присутствовать специализированные макроячейки, реализующие функциональные типовые узлы (например, запоминающее устройство).Помимо ячеек, являющихся заготовками для реализации элементов, на БМК могут присутствовать фиксированные части соединений. К ним относятся шины питания, земли, синхронизации и заготовки для реализации частей сигнальных соединений. Например, для макроячеек (b) шины питания и земли проводятся вдоль верхней и нижней сторон соответственно. Для макроячеек (a,d) шины проводятся вдоль линии, разделяющей верхний и нижний ряды ячеек, что приводит к уменьшению потерь площади кристалла. Для реализации сигнальных соединений на БМК получили распространение два вида заготовок: фиксированное расположение однонаправленных (горизонтальных или вертикальных) участков трасс в полном слое; фиксированное расположение участков трасс в одном слое и контрактных окон, обеспечивающих выход фиксированных трасс во второй слой. В первом случае для реализации коммутации проектируемой схемы не требуется разработка фотошаблона фиксированного слоя, т. е. число разрабатываемых фотошаблонов уменьшается на единицу. Во втором случае число разрабатываемых фотошаблонов уменьшается на два (не требуется также фотошаблон контактных окон). Отметим, что в настоящее время получили распространение различные виды формы и расположения фиксированных трасс и контактных окон. Целесообразность использования того или иного вида определяется типом макроячеек, степенью интеграции кристалла и объемом производства. При реализации соединений на БМК часто возникает необходимость проведения трассы через область, занятую макроячейкой. Такую трассу будем называть транзитной. Для обеспечения такой возможности допускается: проведение соединения через область, занятую ячейкой, проведение через зазоры между ячейками. Первый способ может применяться, если в ячейке не реализуется элемент, или реализация элемента допускает использование фиксированных трасс и неподключенных выводов для проведения транзитной трассы. Таким образом, в настоящее время разработано большое многообразие типов БМК, которые имеют различные параметры. При проектировании микросхем на БМК необходимо учитывать конструктивно-технологические характеристики кристалла. К ним относятся геометрические параметры кристалла, форма и расположение макроячеек на кристалле и ячеек внутри макроячеек, расположение шин и способ коммутации сигнальных соединений. Итак, следует отметить, что задача определения структуры БМК является достаточно сложной, и в настоящее время она решается конструктором преимущественно с использованием средств автоматизации.

 

4.2 Реализация логических элементов на БМК

 

Выше было показано, что БМК представляет собой заготовку, на которой определенным образом размещены электронные приборы (транзисторы и др.). Следовательно, проектирование микросхемы можно было бы вести и на приборном уровне. Однако этот способ не находит распространения на практике по следующим причинам. Во-первых, возникает задача большой размерности. Во-вторых, учитывая повторяемость структуры частей кристалла и логической схемы, приходится многократно решать однотипные задачи. Поэтому применение БМК предполагает использование библиотеки типовых логических элементов, которая разрабатывается одновременно с конструкцией БМК. В этом отношении проектирование матричных БИС подобно проектированию печатных плат на базе типовых серий микросхем. Таким образом, при применении БМК проектируемая схема описывается на уровне логических элементов, а каждый элемент содержится в библиотеке. Эта библиотека формируется заранее. Она должна обладать функциональной полнотой для реализации широкого спектра схем. Традиционно подобные библиотеки содержат следующие элементы: И-НЕ, ИЛИ-НЕ, триггер, входные, выходные усилители и др. Для реализации элемента используется одна или несколько ячеек кристалла, т. е. размеры элемента всегда кратны размерам ячейки. Топология элемента разрабатывается на основе конструкции ячейки и представляет собой совокупность трасс, которые совместно с имеющимися на кристалле постоянными частями реализуют требуемую функцию. Именно описание указанных соединений и хранится в библиотеке. В зависимости от того, на каких ячейках реализуются элементы, можно выделить внешние (согласующие усилители, буферные схемы и др.) и внутренние, или просто логические элементы. Если внешние элементы имеют форму прямоугольников независимо от типа кристалла, то для логических элементов существует большое разнообразие форм, которое определяется типом макроячеек. Так, для макроячейки, показанной на , возможные формы элементов приведены на рис. 5.При этом следует иметь в виду, что каждая форма может быть реализована с поворотом относительно центра макроячейки на угол, кратный 90′. Для расширения возможностей наилучшего использования площади кристалла для каждого логического элемента разрабатываются варианты топологии, позволяющие его реализовать в различных частях макроячейки. Поскольку структура макроячейки обладает симметрией, то эти варианты топологии, как правило, могут быть получены из базового вращением относительно осей симметрии. При проектировании на уровне элементов существенными данными являются форма логического элемента и расположение его выводов (цоколевка).

 

4.3 Системы автоматизированного проектирования матричных БИС постановка задачи проектирования

 

Задача конструирования матричных БИС состоит в переходе от заданной логической схемы к ее физической реализации на основе БМК. При этом исходные данные представляют собой описание логической схемы на уровне библиотечных логических элементов, требования к его функционированию, описание конструкции БМК и библиотечных элементов, а также технологические ограничения. Требуется получить конструкторскую документацию для изготовления работоспособной матричной БИС. Важной характеристикой любой электронной аппаратуры является плотность монтажа. При проектировании матричных БИС плотность монтажа определяется исходными данными. При этом возможна ситуация, когда искомый вариант реализации не существует. Тогда выбирается одна из двух альтернатив: либо матричная БИС проектируется на БМК больших размеров, либо часть схемы переносится на другой кристалл, т. е. уменьшается объем проектируемой схемы. Основным требованием к проекту является 100%-ная реализация соединений схемы, а традиционным критерием, оценивающими проект, суммарная длина соединений. Именно этот показатель связан с такими эксплуатационными параметрами, как надежность, помехоустойчивость, быстродействие. В целом задачи конструирования матричных БИС и печатных плат родственны, что определяется заранее заданной формой элементов и высоким уровнем унификации конструкций. Вместе с тем имеют место следующие отличия:-элементы матричных БИС имеют более сложную форму (не прямоугольную);- наличие нескольких вариантов реализации одного и того же типа элемента;-позиции для размещения элементов группируются в макроячейки;-элементы могут содержать проходы для транзитных трасс;-равномерное распределение внешних элементов по всей периферии кристалла;-ячейка БМК, не занятая элементом, может использоваться для реализации соединений;-число элементов матричных БИС значительно превышает значение соответствующего параметра печатных плат. Перечисленные отличия не позволяют непосредственно использовать САПР печатных плат для проектирования матричных БИС. Поэтому в настоящее время используются и разрабатываются новые САПР, предназначенные для проектирования матричных БИС, а также дорабатываются и модернизируются уже действующие САПР печатных плат для решения новых задач. Реализация последнего способа особенно упрощается, когда в системе имеется набор программ для решения задач теории графов, возникающих при конструировании. Поскольку трассировка соединений на БМК ведется с заданным шагом на дискретном рабочем поле (ДРП), то необходимо, чтобы выводы элементов попадали в клетки ДРП. Однако внешние выводы макроячеек могут располагаться с шагом, не кратным шагу ДРП. В этом случае используется простой прием введения фиктивных контактных площадок, связанных с внутренними частями ячейки. Если трасса к макроячейке не подходит, то область фиктивной площадки остается свободной. При разработке САПР БИС на БМК необходимо учитывать требования к системам, диктуемые спецификой решаемой задачи. К ним относятся:

1.Реализация сквозного цикла проектирования от схемы до комплектов машинных документов на изготовление, контроль эксплуатацию матричных БИС.

2.Наличие архива данных о разработках, хранимого на долговременных машинных носителях информации.

3.Широкое применение интерактивных режимов на всех этапах проектирования.

4.Обеспечение работы САПР в режиме коллективного пользования. Учитывая большую размерность задачи проектирования, большинство существующих САПР матричных БИС реализовано на высокопроизводительных ЭВМ. Однако в последнее время все больше зарубежных фирм применяет и мини-ЭВМ.

 

 

Заключение

 

Технология сверхбольших интегральных схем определяет прогресс в передовых областях науки и техники и является основой для развития высокотехнологичных отраслей отечественной промышленности. Она имеет широкий спектр применений: от бытовой аппаратуры до специализированных устройств оборонной техники. Мировой рынок интегральных схем практически неисчерпаем, что позволит создавать высокорентабельные ориентированные на экспорт производства. В настоящее время основная часть производимых интегральных схем в мире соответствует минимальным рабочим размерам элементов 0,8-1,0 мкм. Ведущие зарубежные фирмы США, Японии и Южной Кореи имеют заводы, выпускающие высокопроизводительные микропроцессоры и ультра большие схемы памяти с минимальными размерами 0,5 мкм. В Казахстане имеются пилотные линии для производства кремниевых интегральных схем с минимальными размерами рабочих элементов 0,8-1 мкм. В ближайшее время будет завершено создание производства схем с размерами элементов на уровне 0,5 мкм. Освоение этих линий позволит Казахстану полностью обеспечить внутреннюю потребность кремниевыми схемами отечественного производства сложностью до сотен тысяч транзисторов на кристалле и выйти на мировой рынок. Создание научно-технического задела в области перспективных технологий и устройств микро и наноэлектроника дает возможность модернизировать производство и расширить объем экспорта отечественных электронных компонентов.

 

 

Литература

 

  1. Пупышев Алексей Владимирович (проект ”Работай головой”)
  2. Фонарев А.А. (”Автоматизированное проектирование СБИС на базовых матричных кристаллах” Масква 1995 г.)
  3. Интернет (Статьи фирмы ‘Altera’, Министерство науки, промышленности и технологий РФ)
  4. Ершова Н.Ю., Иващенков О.Н., Курсков С.Ю. (”Микропроцессоры”) Санкт Петербург 2002 г.

Нашли опечатку? Выделите и нажмите CTRL+Enter

Похожие документы
Обсуждение

Ответить

Курсовые, Дипломы, Рефераты на заказ в кратчайшие сроки
Заказать реферат!
UkrReferat.com. Всі права захищені. 2000-2020