.

Шпаргалка по высшей математике

Язык: русский
Формат: реферат
Тип документа: Word Doc
0 1757
Скачать документ

1. Определители. Основные определения. Вычисление определителей третьего
порядка.

Определитель- число, характеризующее матрицу. Определителем матрицы 1-го
порядка А=(а11) является единственный элемент этой матрицы.
Определителем 2-го порядка называется число, характеризующее матрицу
2-го порядка, которое находится по следующему правилу: из произведений
элементов главной диагонали вычитается произведение элементов второй
диагонали матрицы А. Определителем матрицы 3-го порядка называется
число, вычисляемое по правилу Сарруса. Правило Сарруса: определитель
3-го порядка ((3) равен алгебраической сумме 6-ти тройных произведений
элементов, стоящих в разных строках и разных столбцах; со знаком «+»
берутся произведения, сомножители которых находятся на главной диагонали
и в вершинах треугольников, чьи основания параллельны главной диагонали,
остальные слагаемые берутся со знаком «-».

2. Свойства определителей.

1) Если к.-л. строка или столбец в матрице состоит из одних нолей, то (
этой матрицы равен 0. 2)При транспонировании матрицы её определитель не
изменяется: (А (=( А’( . 3) Если все элементы к.-л. строки или столбца
матрицы умножить на одно и то же число, то и ( этой матрицы умножится на
это же число. 4) При перестановке местами 2-х строк или столбцов матрицы
её определитель меняет свой знак на противоположный. 5) Если квадратная
матрица содержит 2 одинаковых строки или столбца, то её определитель
равен 0. 6)Если 2 строки или 2 столбца матрицы пропорциональны, то её (
равен 0. 7) Сумма произведений элементов к.-л. строки или столбца
матрицы и другой строки или столбца равна 0. 8) Определитель матрицы не
изменяется если к элементам одной строки или столбца прибавить элементы
другой строки или столбца, умноженный на одно и то же число. 9)Если
к.-л. столбец или строка матрицы представляет собой сумму 2-х элементов,
то ( этой матрицы может быть представлен в виде суммы 2-х
определителей.

3. Минор.

Минором Мij квадратной матрицы n-го порядка для элемента аij
называется определитель (n-1)-ого порядка, полученный с данного
вычёркиванием i-ой строки и j-ого столбца.

4. Алгебраическое дополнение.

Алгебраическим дополнением Аij для элемента квадратной матрицы аij
называется минор этого элемента, взятый со знаком (-1)i+j .

5. Вычисление определителей любого порядка. Понятие определителя n-ого
порядка.

Определителем квадратной матрицы n-ого порядка называется число, равное
алгебраической сумме n членов, каждый из которых является произведением
n-элементов матрицы, взятых по одному из каждой строки или столбца
(причём знак каждого члена определяется как (-1)r(j), где r(j)-число
инверсий). Теорема Лапласа: определитель квадратной матрицы равен сумме
произведений элементов к.-л. строки или столбца на их алгебраические
дополнения.

6. Матрицы. Основные определения.

Матрицей размера mxn называется прямоугольная таблица чисел, содержащая
m строк и n столбцов. Вектор-строкой называют матрицу, состоящую из
одной строки. Вектор-столбцом – из одного столбца. Матрица, у которой
количество столбцов равно количеству строк, называется квадратной
матрицей n-ого порядка. Элементы матрицы, у которых номер строки и
номер столбца совпадает, называются диагональными и образуют главную
диагональ матрицы. Если все недиагональные элементы матрицы равны нулю,
то матрицу называют диагональной. Если у диагональной матрицы n-ого
порядка на главной диагонали все элементы равны 1, то матрица
называется единичной и обозначается Е. Матрица любого размера, все
элементы которой равны 0, называется нуль-матрицей.

7. Операции над матрицами.

1)Умножение матрицы на число: условий нет, умножить на число можно любую
матрицу. Произведением матрицы А на число ( называется матрица В, равная
(А, каждый элемент которой находится по формуле: bij =( x aij. Для
того, чтобы умножить матрицу на число необходимо умножить на это число
каждый элемент матрицы. 2)Сложение 2-х матриц: условие – складывать
можно только матрицы одинакового размера. Суммой 2-х матриц А и В
называется матрица С=А+В, каждый элемент которой находится по формуле
Сij=aij+bij. Для того, чтобы сложить 2 матрицы, необходимо складывать
между собой элементы, стоящие на одинаковых местах. 3)Вычитание 2-х
матриц: операция аналогична сложению. 4)Умножение 2-х матриц: умножение
А на В возможно тогда и только тогда, когда число столбцов А равно числу
строк В; произведением матрицы А размера mxk на матрицу В размера kxn
называется матрица С размера mxn, каждый элемент которой равен сумме
произведений элементов i-ой строки матрицы А на соответствующие элементы
j-ого столбца матрицы В. 5)Возведение в степень: возводить в степень
можно только квадратные матрицы; целой положительной степенью квадратной
матрицы Аm называется произведение m-матриц, равных А.
6)Транспонирование: условий нет; транспонирование-операция, в результате
которой строчки и столбцы матрицы меняются местами с сохранением порядка
элемента, при этом элементы главной диагонали остаются на своих местах.

8. Понятие обратной матрицы и алгоритм её вычисления.

Матрица А-1 называется обратной по отношению к квадратной матрице А,
если при умножении её на заданную как справа так и слева получатся
единичная матрица. Теорема (необходимое и достаточн.условие сущ-я
обратн.матрицы): обратная матрица А-1 сущ-т и единственна тогда и
только тогда, когда заданная матрица не вырожденная. Матрица называется
вырожденной, если её определитель равен 0, в противном случае она – не
вырожденная. Алгоритм: 1)Определитель заданной матрицы.
2)Транспонирование. 3)Алгебраические дополнения всех элементов
транспонированной матрицы. 4) Присоед.матрица А( (на месте каждого эл-та
Ат его алгебраич.доп-я). 5) А-1= 1/(А (((. 6) Проверка((А-1 (А=Е.

9. Ранг матрицы. Элементарные преобразования.

Рангом матрицы А называется наивысший порядок отличных от 0 миноров этой
матрицы (rang A=r(A)(. Ранг матрицы не изменяется при проведении
элементарных преобразований. Преобразования: 1)отбрасывание строки или
столбца, состоящих из одних нулей; 2)умножение всех эл-ов к.-л. строки
или столбца матрицы на одно и то же число, отличное от 0; 3)изменение
порядка строк или столбцов матрицы; 4)прибавление к каждому эл-ту к.-л.
строки или столбца эл-ов др. строки или столбца, умноженных на одно и то
же число, не равное 0; 5) транспонирование матрицы.

10. Системы линейных алгебраических уравнений. Основные определения.
Матричная форма записи.

Линейным ур-ем относительно неизвестных x1,x2,…,xn называется выражение
вида a1x1+a2x2+…+anxn=b, где a1,a2,…,an и b- простые числа, причём
a1,a1,…,an называются коэффициентами при неизвестных, а b- свободным
коэффициентом. Последовательность чисел k1,k2,…,kn называется решением
ур-я, если при подстановке этих чисел в ур-е оно обращается в верное
равенство. Два линейных ур-я называются равносильными, если их решения
совпадают. Чтобы получить равносильное ур-е из заданного, необходимо
осуществить следующие преобразования: 1) перенос слагаемых из одной
части ур-я в другую; 2) поэлементное умножение всего ур-я на одно и то
же число, отличное от ноля. Решить линейное ур-е –это значит найти все
его решения или установить, что их нет. Система уравнений называется
совместной, если она имеет хотя бы одно решение. Система ур-ий
называется определённой, если она имеет одно единственное решение, и
неопределённой, если решений множество. Неизвестное x1 называется
разрешённым, если к.-н. ур-е системы содержит неизвестное x1 с
коэффициентом, равным 1, а во все др. ур-я системы неизвестное x1 не
входит. Если каждое ур-е системы содержит разрешённое неизвестное, то
такую систему называют разрешённой. Неизвестные СЛУ, которые не входят в
разрешённый набор, называются свободными. Разрешённая СЛУ всегда
совместна, она будет определённой, если число ур-ий равно числу
неизвестных; и неопределённой, если число неизвестных больше, чем ур-ий.
Для того, чтобы определить совместна система или нет, не решая её, можно
воспользоваться теоремой Кронекера-Капелли. Матрица, эл-тами которой
являются коэффициенты при неизвестных системы, называется матрицей
системы. Матрица системы, дополненная столбцом свободных коэффициентов,
называется расширенной матрицей.

11. Правило Крамера.

Правило Крамера: пусть (А-определитель матрицы системы, а
(j-определитель матрицы, полученной из матрицы системы заменой j-ого
столбца на столбец свободных коэффициентов; тогда, если (А(0, то система
имеет единственное решение, определяемое по формуле ( Xj= (j/ (A.

12. Теорема Кронекера-Капелли.

Теорема Кронекера-Капелли: СЛУ совместна тогда и только тогда, когда
ранг матрицы системы равен рангу расширенной матрицы этой системы.
Система ур-ий называется совместной, если она имеет хотя бы одно
решение.

13. Решение систем линейных алгебраических ур-ий методом Гаусса.

Метод Гаусса: каждую СЛУ при помощи конечного числа преобразований можно
превратить в разрешённую системы ур-ий или в систему, содержащую
противоречивое ур-е. Противоречивым называется ур-е вида
OX1+OX2+…+OXn=b. Если каждое ур-е системы содержит разрешённое
неизвестное, то такую систему называют разрешённой. Неизвестное x1
называют разрешённым, если к.-н. ур-е системы содержит неизвестное x1 с
коэффициентом, равным 1, а во все другие ур-я системы неизвестное x1 не
входит.

14. Матричный метод решения системы линейных алгебраических уравнений.

Этим способом можно решить лишь те системы, в которых число неизвестных
равно числу уравнений. Алгоритм: 1)Записать матрицу системы (А); 2)
Найти обратную матрицу для матрицы системы (А-1); 3) Умножить А-1 на
матрицу свободных коэффициентов (В) ( X=A-1(B.

15. Однородная система линейных алгебраических уравнений.

Система m линейных ур-ий с n переменными называется системой линейных
однородных уравнений, если все свободные члены равны 0. Система линейных
однородных ур-ий всегда совместна, т.к. она всегда имеет, по крайней
мере, нулевое решение. Система линейных однородных ур-ий имеет ненулевое
решение тогда и только тогда, когда ранг её матрицы коэффициентов при
переменных меньше числа переменных, т.е. при rang A ( n. Всякая лин.
комбинация решений системы лин. однородн. ур-ий также является решением
этой системы. Система лин.независимых решений е1, е2,…,еk называется
фундаментальной, если каждое решение системы является линейной
комбинацией решений. Теорема: если ранг r матрицы коэффициентов при
переменных системы линейных однородных уравнений меньше числа переменных
n, то всякая фундаментальная система решений системы состоит из n-r
решений. Поэтому общее решение системы лин. однордн. ур-ий имеет вид:
с1е1+с2е2+…+сkеk, где е1, е2,…, еk – любая фундаментальная система
решений, с1, с2,…,сk – произвольные числа и k=n-r. Общее решение системы
m линейных ур-ий с n переменными равно сумме общего решения
соответствующей ей системы однородн. линейных ур-ий и произвольного
частного решения этой системы.

1 (16). Скалярные и векторные величины. Основные определения.

В математике используется 2 вида величин: а) скалярные – величины,
которые полностью определяются заданием их числовых значений (длина,
площадь, объём, масса и т.д.); б) векторные – величины, для полного
определения которых помимо численного значения требуются ещё и
направления в пространстве (изображаются при помощи векторов). Вектор –
направленный отрезок на плоскости или в пространстве, имеющий
определённую длину, у которого одна из точек принята за начало, а другая
за конец. Координатами вектора (а являются координаты его конечной
точки. Длиной вектора (нормой) или модулем называется число, равное
длине отрезка, изображающего вектор ((a(((x2+y2(+z2)(. Если начало и
конец вектора совпадают, то такой вектор называется нулевым и
обозначается (0. ( направление (0 произвольно, не определено). Для
каждого (а, отличного от 0, существует противоположный -(а, который
имеет модуль, равный (а(, коллиниарен с ним, но направлен в другую
сторону. Два вектора (а и(в называются коллинеарными, если они
расположены на одной прямой или на параллельных прямых. Два вектора
называются равными, если они: 1)имеют равные модули; 2)коллиниарны;
3)направлены в одну сторону.

2 (17). Линейные операции над векторами. Свойства линейных операций.

1)Сложение 2-х векторов: (правило треугольников) суммой 2-х векторов (а
и(в называют вектор (с =(а +(в, начало которого совпадает с началом (а,
а конец- с концом (в при условии, что начало (в совпадает с концом(а. 2)
Сложение нескольких векторов: (правило многоугольника) сумма 4-х
векторов (а,(в,(с,(d есть вектор(е =(а +(в +(с +(d, начало которого
совпадает с началом (а, а конец- с концом(d. (правило параллелепипеда)
сумма 3-х векторов (а,(в,(с определяется как (d =(а +(в +(с. 3)Вычитание
2-х векторов: разностью 2-х векторов (а и (в называется сумма (а и -(в
(противоположного). 4) Суммой 2-х векторов одинаковой размерности n
называется вектор, каждая компонента которого равна сумме
соответствующих компонент слагаемых вектора: (( = (x +(y, (i=xi + yi
(i. 5) Произведением (x на действительное
число а называется (в = а(x, каждая компонента которого равна а((xi.
Cвойства лин. операций над векторами: 1)коммутативное св-во суммы
(переместительное); 2)ассоциативное св-во суммы (сочетательное);
3)ассоциативное относительно числового множителя: ((( (((( ( ((((((;
4)дистрибьютивное (распределительное; 5)существование нулевого вектора,
такого, что ((((((( ((( ; 6)для любого (( существует такой
противоположный -(( , что (((((((((((((; 7)для любого (( справедливо:
(((((((.

3 (18). Векторное пространство, его размерность. Понятие Базиса.

N-мерным вектором называется упорядоченная совокупность n-действительных
чисел, записанных в виде (x=(x1,x2,xi,xn), где Xi-компонента (X. Два
N-мерных вектора равны тогда и только тогда, когда равны их
соответствующие компоненты: (x =(y, если xi=yi (i. Множество векторов с
действительными компонентами, в котором определены операции сложения
векторов и умножения вектора на число, удовлетворяющее всем сво-вам
суммы( коммутативное, ассоциативные), называется векторным
пространством. Размерность векторного пространства равна количеству
векторов в базисе этого пространства. Совокупность n-мерных векторов,
рассматриваемая с определёнными в ней операциями сложения векторов и
умножения вектора на число, называется n-мерным координатным
пространством. Система n—мерных лин. независимых векторов называется
базисом Rn (R2-плоскость,R3-пространство), если каждый вектор этого
пространства R разлагается по векторам этой системы. Базисом называется
совокупность всех лин. независимых векторов системы пространства.
Теорема: для того, чтобы — 1)2 вектора на плоскости (2)3-в
пространстве) были линейно не зависимы необходимо и достаточно, чтобы
они были не 1) коллиниарны (2) компланарны). Векторы называются
компланарными, если они лежат в одной плоскости или параллельны одной
плоскости. Два вектора (а и(в называются коллинеарными, если они
расположены на одной прямой или на параллельных прямых. Теорема: если
диагональная система является частью n-мерных векторов, то она же
является базисом этой системы. Теорема: любой вектор системы векторов
единственным образов разлагается по векторам её базиса.

4 (19). Базис на плоскости. Разложение вектора по базису R.

Система n—мерных лин. независимых векторов называется базисом Rn
(R2-плоскость,R3-пространство), если каждый вектор этого пространства R
разлагается по векторам этой системы. Базисом называется совокупность
всех лин. независимых векторов системы пространства.

5 (20). Базис в пространстве. Разложение вектора по базису R.

Система n—мерных лин. независимых векторов называется базисом Rn
(R2-плоскость,R3-пространство), если каждый вектор этого пространства R
разлагается по векторам этой системы. Базисом называется совокупность
всех лин. независимых векторов системы пространства.

6 (21). Линейные операции над векторами, заданные координатами.

7 (22). Проекция вектора а на вектор b. Направляющие косинусы вектора.

8 (23). Скалярное произведение векторов. Свойства скалярного
произведения.

Скалярным произведением 2-х векторов (а и(в называется число, равное
произведению модулей, перемноженных на cos угла между ними: а ((в(((а
((((в ((Cos(, где (-угол(а между(в. Скалярное произведение может быть
найдено также по формуле: (а ((в =((а (( пр.а (в =((в(( пр.в (а(
скалярное произведение 2-х векторов равно произведению модуля одного из
них на проекцию на него другого вектора. Свойства скалярного
произведения: 1)Переместительное ((а((в=(в ((а); 2)Сочетательное
относительно числового множителя ((((а ((в)=((а (((в);
3)Распорядительное ( ((а +(в )((с=(а ((с ((в((с); 4)Если скалярное пр-е
равно 0, то либо равен 0 один из перемножаемых векторов, любо Cos угла
между ними, т.е. векторы перпендикулярны. Скалярное произведение само
на себя равно квадрату его модуля.

9 (24). Скалярное произведение ортов. Скалярное произведение векторов,
заданных координатами.

10 (25). Определение угла между двумя векторами.

11 (26). Условия параллельности и перпендикулярности двух векторов.

12 (27). Векторное произведение.

D N R ° ae |

yp

p

yp

p

p

p

p

up

p

p

?

?

?

?

? o?

?

?

o?

o?

>*

/j/up

yp

p

p

p

up

yp

up

uup

uup

p

up

p

up

up

uuup

p

up

p

yp

p

p

p

yp

p

ph33™!екторным произведением вектора (а на вектор (в называется вектор
(с, который определяется следующим образом: 1) модуль (с численно равен
площади параллелограмма, построенного на перемножаемых векторах как на
сторонах (с(=(а(((в( (Sin(. 2) вектор с перпендикулярен обоим
перемножаемым векторам; 3) направление вектора с таково, что если
смотреть из его конца вдоль вектора а к вектору в, осуществляется против
часовой стрелки. Геометрич. смысл векторного произведения –модуль
векторн.пр-я равен площади параллелограмма, построенного на
перемножаемых векторах. Если векторы заданы в координатной форме, то их
векторн. Произведение находится по формуле: (а ((в =( i j k(

(ax ay az(

(bx by bz(.

13 (28). Свойства векторного произведения.

1. При перестановке сомножителей векторное произведение меняет свой знак
на противоположный, сохраняя при этом свой модуль: (а ((в =((в) ((а.
2)Векторн.пр-е обладает сочетательным св-вом относительно числового
(скалярного) множителя: ((((а((в(((((а(((в((а(((((в(. 3)Векторн.пр-е
обладает распределительным св-ом. 4) Если векторн.пр-е 2-х векторов
равно 0-вектору, то либо равен 0 один из перемножаемых векторов, любо
синус угла между ними, т.е. векторы коллиниарны (параллельны). (Для
того, чтобы 2 ненулевых вектора были коллиниарны необходимо и
достаточно, чтобы их векторное пр-е было равно нуль-вектору.

14 (29). Векторное произведение ортов.

15 (30). Векторное произведение векторов, заданных проекциями.

16 (31). Смешанное произведение векторов. Свойства смешанного
произведения. Геометрический смысл смешанного произведения.

Рассмотрим произведение векторов а, в и с, составленное следующим
образом: ((а ((в) – векторно, а затем полученной произведение умножают
на (с скалярно. ((а ((в) ((с. Такое произведение называется
векторно-скалярным или смешанным. Оно представляет собой некоторое
число. Скалярным произведением двух векторов называется произведение
длин двух векторов на косинус угла между ними. Смешанное произведение
равно определителю 3-го порядка, в строках которого стоят
соответствующие проекции перемножаемых векторов.

Свойства: 1)если внутри смешанного произведения в векторном произведении
поменять множители местами, то смешанное пр-е поменяет свой знак на
противоположный, т.е. ((а ((в) ((с = – ((в ((а) ((с; ((а ((в) ((с = (с
( ((а ((в). 2)Для того, чтобы 3 вектора а, в и с были компланарны,
необходимо и достаточно, чтобы их смешанное произведение равнялось 0:
((а ((в) ((с=0. Векторы, параллельные одной плоскости или лежащие в
одной плоскости, называются компланарными. Геометрич. смысл смешанного
произведения: состоит в том, что смешанное пр-е с точностью до знака
равно объёму параллелепипеда, построенного на этих векторах как на
рёбрах.

1 (32). Координаты на прямой. Деление отрезка в данном отношении.

Положение каждой точки на оси определяется числом, равным отношению
длины отрезка прямой от точки 0 до заданной точки к выбранной единице
длины. Положение каждой точки на вертикальной оси определяется
координатой, которая называется ордината. Координата на горизонтальной
оси называется абсцисса. Метод координат на плоскости ставит в
соответствие каждой точки плоскости упорядоченную пару действительных
чисел – координаты этой точки. Расстояние между 2-мя точками возможно
найти 2-мя путями: 1)если обе точки лежат на одной оси, то расстояние
между ними по оси ординат (или абсцисс) равно 0, а по оси абсцисс
(ординат) абсолютной величине разности между абсциссами конца и начала
отрезка +рис.; 2) если 2 точки лежат в одной плоскости, длина отрезка
равна квадратному корню из суммы квадратов разностей соответствующих
координат концов отрезков.

Деление отрезков в данном отношении: даны 2 точки М1(((((( и М2((((((.
Требуется найти внутри отрезка точку М с координатами ((;((, такую, что
отрезок М1М2 поделится точкой М в соотношении М1М/М2М=(. Найти
координаты М, удовлетворяющие данному равенству. Решение:
М1М/М2М=АА1/АА2. АА1=X-X1, AA2=X2-X. M1M/M2M=(X-X1)/(X2-X) =(.
X-X1=((X2-X), X-X1=(X2-(X. X+(X=X1+(X2(X (1+() =X1+(X2, X=X1+(X2/1+(.

2 (33). Общее уравнение прямой и его исследование.

Рассмотрим ур-е первой степени с двумя переменными в общем виде:
Ax+By+C=0, в котором коэффициенты А и В не равны одновременно нулю,
т.е.А2+В2 (0. 1)Пусть В(0. Тогда ур-е Аx+By+C=0 можно записать в виде y=
-Ax/B – C/B. Обозначим k= -А/В, b= -C/B. Если А(0, С(0, то получим
y=kx+b (ур-е прямой, проходящей ч/з начало координат); если А=0, С(0, то
y=b (ур-е прямой, параллельной оси Оy); если А=0, С=0, то y=0 (ур-е оси
Оx). 2)Пусть В=0, А(0. Тогда ур-е Аx+By+C=0 примет вид x= – C/A. Если
С(0, то получим x=a (ур-е прямой, параллельной оси Оy); если С=0, то x=0
(ур-е оси Оy). Таким образом, при любых значениях коэффициентов А, В (не
равных одновременно нулю) и С ур-е Ax+By+C=0 есть ур-е некоторой прямой
линии на плоскости Оxy. Это ур-е называется общим ур-ем прямой. Ур-е
прямой, заданное в общем виде, не даёт представления о расположении
прямой на плоскости, но из него легко находятся все основные хар-ки
прямой: 1)k= -A/B; 2)начальная ордината b= – C/B; 3) отрезки, отсекаемые
прямой на осях ординат: Ax+By+C=0 /((-C)

-Ax/C-By/C=1

a= – C/A; b= – C/B.

3 (34). Уравнение прямой, проходящей через точку М (x, y)
перпендикулярно нормальному вектору n (A, B).

4 (35). Уравнение прямой, проходящей через точку М (x, y) параллельно
направляющему вектору q (l, m).

5 (36). Уравнение прямой, проходящей через две точки М 1(x1, y1)
М2 (x2, y2).

Это ур-е является частным случаем ур-я пучка прямых. Прямая задана 2-мя
лежащими на ней точками М1 (x1;y1) и M2(x2;y2), x1(x2, y1(y2(при
равенстве – применение ур-япрямой, проход.ч.з 2 точки, невозможно). Для
составления ур-я прямой М1М2 необходимо ур-е пучка прямых, проходящих
ч/з точку М1: y-y1=k(x-x1). Т.к. точка M2(x2;y2) лежит на данной
прямой, то чтобы выделить её из пучка, подставим в ур-е пучка прямых
координаты М2 и найдём угловой коэффициент: k=y2-y1/x2-x1.

Теперь ур-е прямой, проходящеё через 2 заданные точки, примет вид:
y-y1=(x-x1) ( y2-y1/x2-x1( y-y1/y2-y1=x-x1/x2-x1.

(др. способ: после ур-я углового коэф-та вывожу: tg (=M2(N/M1(N,
M2N=y2-y1; M1N=x2-x1( tg (=K=y2-y1/x2-x1. Подставим это ур-е в ур-е
пучка прямых: y-y1=(x-x1)(y2-y1/

/x2-x1 ((( y2-y1)( y-y1/y2-y1=x-x1/x2-x1. )

6 (37). Уравнение прямой в отрезках.

Прямая задана отрезками, которые она отсекает на осях координат. Найду
ур-е прямой по заданным отрезкам а(0 и b(0, отсекаемым на осях
координат. Используя ур-е прямой, проходящей через точки А(а;0) и В(0;b)
– y-y1/y2-y1=x-x1/x2-x1—ур-е прямой в отрезках примет вид: y-0/b-0=
x-a/0-a или: -ay= b(x-a), -ay-bx+ab=0
((ab; -y/b-x/a+1=0 (((-1);

x/a+y/b=1. А-отрезок, отсекаемый на оси Оx; В-отрезок на оси Оy. Тогда
прямую можно определить как прямую, заданную двумя точками(A(a;b) на
осиOx и B(0:b) на оси Oy. Подставив координаты этих точек в ур-е прямой,
проходящей через две заданные точки, получим ур-е прямой в отрезках.

7 (38). Уравнение прямой с угловым коэффициентом.

Угловой коэффициент прямой- одна из характеристик расположения прямой на
плоскости; её наклон относительно оси Оx (за угол наклона принимается
((, отсчитываемый от оси Оx против движения часовой стрелки до этой
прямой); tg угла наклона этой прямой к оси Оx. Если k((, то ( -острый;
если (=0, то k=0, прямая параллельна оси Оx; если (=90(, то прямая
параллельна оси Оy, k-не существует. Пусть положение прямой в
прямоугольной системе координат задано величиной отрезка, отсекаемого
этой прямой на оси Оy и k этой прямой. Возьмём произвольную точку М
((;(). Тогда tg угла ( наклона прямой найдём из прямоугольного
треугольника МВN: tg ( = MN/NB= y-b/x. Введём угловой коэффициент прямой
k=tg (; получим k=y-b/x. y=kx+b – ур-е прямой с угловым коэффициентом.
В зависимости от величин k и b возможны следующие варианты расположения
прямой: 1) при в(0, прямая пересекает ось Оx выше начала координат; при
в(0, прямая ( Оx ниже начала координат. 2)при k(0, прямая образует
острый угол с Оx; при k(0,-тупой угол; при k=0-параллельна оси Оx; при
k=(-перпендикулярна Оx.

8 (39). Уравнение прямой, проходящей через данную точку М (x, y) с
данным угловым коэффициентом k.

9 (40). Нормальное уравнение плоскости.

Нормальное ур-е плоскости: x(Cos () +y(Cos ()+z(Cos ()+(=0, где Cos (,
Cos (, Cos (-направляющие Cos –сы нормального вектора; (-расстояние от
начала координат до плоскости. Общее ур-е приводится к нормальному виду
путём умножения на нормирующий множитель.

10 (41). Условие параллельности и перпендикулярности прямых.

1)Если прямые параллельны, то они образуют с осью OX одинаковые углы.
Поэтому угловые коэф-ты k1 и k2 этих прямых равны. Обратно, если k1=
k2, то углы наклона прямых к оси OX одинаковы, откуда следует, что
данные прямые параллельны. Условием параллельности 2-х прямых яв-ся
равенство их угловых коэффициентов. 2)Формула tg(=k2-k1/1+k1k2
определяет угол ( между пересекающимися прямыми через tg(. Если (=90, то
эта формула оказывается неприменимой, т.к. tg=90 не существует. Если
прямые взаимно перпендикулярны, то (2=(1+90, откуда tg(2= tg ((1+90)=
-Сtg(1. tg(2= – 1/ tg(1. Заменяя tg(1 и Сtg(2 через k1 и k2, находим:
k2= 1/ k1 или 1+ k1k2=0. Обратно, пусть k2= 1/ k1, это значит, что tg(2=
-1/tg(1 откуда получаем (2=(1+90. Следовательно, угол между двумя
данными прямыми равен 90, т.е. прямые взаимно перпендикулярны. Условие
перпендикулярности 2-х прямых состоит в том, что угловые коэф-ты этих
прямых обратны по абсолютной величине и противоположны по знаку: k2=
-1/ k1.

11 (42). Угол между прямыми.

Угол ( между 2-мя параллельными прямыми равен 0, тогда tg(=0; с другой
стороны, из условия параллельности, т.е. из равенства k1= k2, следует,
что k1- k2=0 и по формуле tg(=k2-k1/1+k1k2-угол между 2-мя
пересекающимися прямыми-получаем: k1-k2/1+k1k2=0.

12 (43). Плоскость в пространстве. Виды уравнений плоскости.

Существуют следующие виды ур-ий плоскости: 1) Общее ур-е плоскости:
Ax+By+Cz+D=0, где (n=(A,B,C)- нормальный вектор плоскости. 2) ур-е
плоскости, проходящей через точку М1(x1;y1;z1) перпендикулярно вектору
(n=(A,B,C): A(x-x1)+B(y-y1)+C(z-z1)=0. 3)Ур-е плоскости в отрезках:
x/a+y/b+z/c=1, где a,b,c-величины отрезков, отсекаемых плоскостью на
осях координат. 4)Нормальное ур-е плоскости: x(Cos () +y(Cos ()+z(Cos
()+(=0, где Cos (, Cos (, Cos (-направляющие Cos –сы нормального
вектора; (-расстояние от начала координат до плоскости. Общее ур-е
приводится к нормальному виду путём умножения на нормирующий множитель.
5)Ур-е плоскости, проходящей через три заданные точки: М1(x1;y1;z1),
М2(x2;y2;z2), М3(x3;y3;z3).

(x-x1 y-y1 z-z1(

(x2-x1 y2-y1 z2-z1( =0.

(x3-x1 y3-y1 z3-z1(

13 (44). Условие параллельности и перпендикулярности плоскостей.

14 (45). Прямая в пространстве. Виды уравнений прямой в пространстве.

Взаимное ур-е 2-х прямых в пространстве: а) пусть прямые заданы своими
канонич.ур-ями: x-x1/L1=y-y1/m1=z-z1/n1,

x-x2/L2=y-y2/m2=z-z2/n2; где (q 1(L1;m1;n1), (q2 (L2;m2;n2)-
направляющие векторы. Тогда прямые параллельны, если параллельны их
направляющие векторы:(q1 (((q2 ( L1/L2=m1/m2=n1/n2. б) пусть прямые
заданы аналогично случаю а). Две прямые ( тогда и только тогда, когда их
направляющие векторы перпендикулярны ((q1((q2).

L1L2+m1m2+n1n2=0. Существуют следующие виды ур-ий прямой в
пространстве: 1)Общее ур-е прямой: прямая задаётся как линия пересечения
2-х плоскостей.

(A1x+B1y+C1z+D1=0

(A2x+B2y+C2z+D2=0, где А1, В1,С1-непропорциональные коэффициентам А2,
В2, С2.

2)Ур-е прямой, проходящей через две точки (выводится аналогично ур-ю
прямой на плоскости):

x-x2/x2-x1=y-y2/y2-y1=z-z2/z2-z1.

3)Каноническое уравнение прямой в пространстве (ур-е прямой, проходящей
ч/з заданную точку М0 (x0;y0;z0), параллельно направляющему вектору (q
(l;m;n)):

x-x0/l=y-y0/m=z-z0/n.

4)Параметрическое ур-е прямой: прямая задаётся при помощи точки, лежащей
на прямой, и направляющего вектора. М0(x0;y0;z0), (q (l;m;n). (x=x0+lt

(y=y0+mt

( z=z0+nt,
t-параметр.

5)Угол между 2-мя прямыми в пространстве – это, практически, угол между
их направляющими векторами:

Cos(=L1L2+m1m2+n1n2/( L12 +m12+n12 (( L22+m22+n22 .

15 (46). Взаимное расположение прямой и плоскости.

1)Угол между прямой и плоскостью вычисляется по формуле:
Cos(=(Al+Bm+Cn(((A2+B2+C2 ((l2+m2+n2. Где l, m, n- координаты
направляющего вектора прямой; A, B, C- координаты (n. В этом случае
прямая может быть задана каноническим или параметрическим ур-ем прямой,
а плоскость – общим. 2)Прямая и плоскость в пространстве параллельны:
тогда и только тогда, когда скалярное произведение направляющего вектора
прямой и нормального вектора плоскости равно 0. (n(A,B,C)(q (l;m;n)(
Ax+By+Cz+D=0 (общее ур-е плоскости); x-x0/l=y-y0/m=z-z0/n. Т.к. (n ((q=0
(Al+Bm+Cn=0. 3)прямая и плоскость в пространстве перпендикулярны: тогда
и только тогда, когда направляющий вектор прямой и нормальный вектор
плоскости коллинеарные (параллельны). Два вектора коллинеарны тогда и
только тогда, когда их векторное произведение равно 0 или координаты
пропорциональны. Т.к. (n ((q=0, А/l=B/m=C/n. 4)условия, при которых
прямая принадлежит плоскости: а)скалярное произведение(n ((q=0, т.е.
Al+Bm+Cn=0; б) при подстановке координат точки, лежащей на прямой, в
общее ур-е плоскости получается верное равенство( Ax0+By0+Cz0+D=0

(x=x0+lt,

(y=y0+mt,

(z=z0+nt (параметрич. ур-е прямой).

5)точка пересечения прямой и плоскости: для того, чтобы найти координаты
точки пересечения прямой и плоскости в пространстве, необходимо
совместно решить систему, составленную из ур-ий: x-x0/l=y-y0/m=z-z0/n
(канонич. ур-е прямой), Ax+By+Cz+D=0 (общее ур-е плоскости). Для
того,чтобы решить такую систему необходимо перейти от канонич. ур-я к
параметрическому: (x=x0+lt,

(y=y0+mt,

(z=z0+nt (параметрич. ур-е прямой)

( Ax+By+Cz+D=0.

16 (47). Кривые второго порядка. Окружность.

Кривой 2-го порядка называется линия, определяемая уравнением 2-ой
степени относительно текущих декартовых координат. В общем виде ур-е
принимает вид: Ax2+2Bxy+Cy2+2Dx+2Ey+F=0, где A, 2B, C, 2D, 2E, F-
действительные числа. Кроме того, по крайней мере, одно из этих чисел
(0. Окружность-множество точек, равно удалённых от данной точки
(центра). Если обозначить через R радиус окр., а через С(x0,y0) –центр
окружности, то исходя из этого определения :

Возьмём на окр. произвольную точку М (x,y). По определению, расстояние
СМ= R. Выражу СМ ч/з координаты заданных точек: СМ =( (x-x0)2+(y-y0)2 =
R (R2=(x-x0)2+(y-y0)2 -ур-е окр. С центром в точке С(x0,y0). Это ур-е
называется нормальным ур-ем окружности. Ax2+2Bxy+Cy2+2Dx+2Ey+F=0-ур-е
второй степени с 2-мя переменными в общем виде. Ax2++Cy2 =(-кривая
второго порядка, где А,В,С не равны 0 одновременно, т.е. А2+В2+С2(0.
x2+y2-2x0x-2y0y+x02+y02-R2=0; B=0, A/1=C/1(A=C(0 (т.к. A2+B2+C2(0, B=0).
Получаем ур-е: Ax2+Ay2+Dx+Ey+F=0- общее ур-е оркужности. Поделим обе
части этого ур-я на А(0 и, дополнив члены, содержащие x,y, до полного
квадрата, получаем: (x+(D/2A))2+(y+(E/2A))2=(D2+E2-4AF)/4A2. Cравнивая
это ур-е с нормальным ур-ем окр., можно сделать вывод, что ур-е:
Ax2+Bxy+Cy2+Dx+Ey+F=0-ур-е действительной окружности, если:1)А=С; 2)В=0;
3) D2+E2-4AF(0. При выполнении этих условий центр окр. расположен в
точке О(-D/2A;-E/2A), а её радиус R=(D2+E2-4AF/2A.

17 (48). Кривые второго порядка. Эллипс.

Кривой 2-го порядка называется линия, определяемая уравнением 2-ой
степени относительно текущих декартовых координат. В общем виде ур-е
принимает вид: Ax2+2Bxy+Cy2+2Dx+2Ey+F=0, где A, 2B, C, 2D, 2E, F-
действительные числа. Кроме того, по крайней мере одно из этих чисел (0.
Эллипс (кривая эллиптического типа) – кривая 2-го порядка, где
коэффициенты А и С имеют одинаковые знаки.

18 (49). Кривые второго порядка. Гипербола.

Кривой 2-го порядка называется линия, определяемая уравнением 2-ой
степени относительно текущих декартовых координат. В общем виде ур-е
принимает вид: Ax2+2Bxy+Cy2+2Dx+2Ey+F=0, где A, 2B, C, 2D, 2E, F-
действительные числа. Кроме того, по крайней мере одно из этих чисел (0.
Кривая 2-го порядка называется гиперболой (или кривой гиперболического
типа), если коэффициенты А и С имеют противоположные знаки, т.е. АС(0.
Кривые 2го порядка описываются с помощью общего ур-я:

Ax2+2Bxy+Cy2+2Dx+2Ey+F=0, где

а) Каноническое ур-е параболы: y2=2px или y=ax2

19 (50). Кривые второго порядка. Парабола.

Кривой 2-го порядка называется линия, определяемая уравнением 2-ой
степени относительно текущих декартовых координат. В общем виде ур-е
принимает вид: Ax2+2Bxy+Cy2+2Dx+2Ey+F=0, где A, 2B, C, 2D, 2E, F-
действительные числа. Кроме того, по крайней мере одно из этих чисел (0.

(-для любого, для каждого (-для любого, для каждого (-для
любого, для каждого

(-векторное умножение, ( -скалярное умножение
(-векторное умножение, ( -скалярное умножение
(-векторное умножение, (
-скалярное умножение

(-существует, найдётся (-существует, найдётся (-существует,
найдётся

2)

Нашли опечатку? Выделите и нажмите CTRL+Enter

Похожие документы
Обсуждение

Оставить комментарий

avatar
  Подписаться  
Уведомление о
Заказать реферат
UkrReferat.com. Всі права захищені. 2000-2019