.

Некоторые подходы к задачам распознавания и их приложениям

Язык: русский
Формат: реферат
Тип документа: Word Doc
0 356
Скачать документ

НЕКОТОРЫЕ ПОДХОДЫ К ЗАДАЧАМ РАСПОЗНАВАНИЯ

ОБРАЗОВ И ИХ ПРИЛОЖЕНИЯМ

Е. Т. РАМАЗАНОВ

Сейчас статистические исследования развиваются в
направлении научного предсказывания, прогнозирования социально-
экономической среды. Один из подходов решение вопроса прогнозирование
заключается в решении задач классификаций.

Одно из условий развития науки в направлении научного
прогнозирования заключается в возможностях современной ЭВМ, которые
позволяют обрабатывать огромные массивы информации.

Известно что существует множество подходов решений вопроса научного
прогнозирования, такие как эксперимент, компьютерная моделирования.
Возникает вопрос, на сколько можно доверять результатам решений
предсказываниие, и, вообще, достоверен ли полученный результат,
насколько разница она с действительностью. Безусловно что решая
конкретную заданную задачу, каждый метод имеет свои плюсы и минусы и
исследователь используя тот или иной метод стремится к тому что бы
ошибка разницы была достаточно маленькой, и если уж совсем ошибки не
возможно устранить, то оценить их (здесь вопрос достоверности он
переносит в иное поле, исследователь решает вопрос объективно имитирует
ли реальный процесс или явление созданная модель. или. Строит критерий
качества т.е. применяет идей оптимизации. Если да то он доверяет
результату ). Оценить ошибку достоверности предсказывание порой и
невозможно сделать ибо статистические оценки гипотез вероятностны.

Описанный здесь подход может быть эффективен с точки зрение
достоверного предсказывания.

Задача классификаций тесно связана с такими дисциплинами как
математическая статистика, теория вероятностей, кластерный анализ. Было
проделана огромная работа по разработке методов и подходов решений задач
классификаций. Фундаментом послужили такие работы как Дж. Хартигана,
Миркина, Дюрана М.Б. ,Дж. Вэн Райзена , Айвазяна . и др.

Решение задачи классификаций основана на кластерном анализе.

Изложенные здесь основные идей кластерного анализа
основываются на работах [2 ]и[ 3].

Пусть множество Т=( Т 1Т2 Т3 ,…, Тn ) обозначает n
обьектов .

Предположим, что существует некоторое множество наблюдаемых

показателей или характеристик. Обозначим это множество

С=(С1 С2 С3, .. ., Ср); этими характеристиками обладает каждый
индивид из множества Т. Наблюдаемые характеристики могут быть
количественными или качественными . Наблюдение часто называют
измерениями. Результат измерение i-й характеристики(измерение ) Tj
–обьекта обозначим хij , а вектор Хj=[ хij]
размером рХ1 будет отвечать каждому ряду измерений для j- го
обьекта . Таким образом исследователь множеством

Х=(Х1 Х2 Х3 ,…, Хp) описывает множество Т.

Множество Х может представлено как к точек в р- мерном евклидовом
пространстве Ер .

Задача кластерного анализа заключается в том чтобы на оснований
данных в множестве Х разбить множество Т на m-классов m

Похожие документы
Обсуждение
    Заказать реферат
    UkrReferat.com. Всі права захищені. 2000-2019