Федеральная Авиационная Служба России
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ
Кафедра прикладной математики
Курсовая работа защищена
с оценкой _________________.
.__________________________.
Руководитель
доцент, к.т.н. Лукина О. П.
.__________________________.
подпись
КУРСОВАЯ РАБОТА
по теме
НАХОЖДЕНИЕ ВСЕХ ДЕЙСТВИТЕЛЬНЫХ КОРНЕЙ АЛГЕБРАИЧЕСКОГО МНОГОЧЛЕНА МЕТОДОМ
ДЕЛЕНИЯ ОТРЕЗКА ПОПОЛАМ (БИСЕКЦИИ) И МЕТОДОМ ХОРД И КАСАТЕЛЬНЫХ С
УКАЗАННОЙ ТОЧНОСТЬЮ И УЧЕТОМ ВОЗМОЖНОЙ КРАТНОСТИ КОРНЕЙ
(Пояснительная записка к курсовой работе по дисциплине «Численные
методы»)
Работу выполнили
студенты 5-го курса
специальности 01.02
Козлов Сергей Александрович
/Козлов С.А./————————.
Семенчихин Владимир Владимирович
/Семенчихин В.В./————————.
28.X/1999 года.
МОСКВА – 1999
АННОТАЦИЯ
В данной курсовой работе рассмотрен принцип нахождения корней
алгебраического многочлена следующими численными методами: метод
бисекции, метод хорд и касательных, метод разложения на множители с
учетом определяемой точности и проверки кратности корней, а также в
среде Visual Basic for Applications 6.0 была разработана программа,
реализующая этот поиск и проверку. В пояснительной записке приводится
описание как самих численных методов, так и программы, включая примеры и
«экранные копии».
ТЕХНИЧЕСКОЕ ЗАДАНИЕ
Разработать программу для вычисления корней алгебраического многочлена
следующими численными методами : методом половинного деления, методом
хорд и касательных, методом разложения на множители, а также обеспечить
вычисление значений корней с указываемой точностью и проверку кратности
корней. Среда разработки программы – произвольная.
ПРЕДМЕТНАЯ ОБЛАСТЬ
2.1. Описание численных методов
Численные методы позволяют найти решения определенных задач, заранее
зная, что полученные результаты будут вычислены с определенной
погрешностью, поэтому для многих численных методов необходимо заранее
знать «уровень точности», которому будет соответствовать полученное
решение.
В этой связи задача нахождения корней многочлена вида (1)
F(x)=a0+a1x+a2x2+…+anxn (1)
представляет особый интерес, т.к. формулы нахождения корней даже
кубического уравнения достаточно сложны, а если необходимо отыскать
корни многочлена, степень которого равна, например, 5 – то без помощи
численных методов не обойтись, тем боле, что вероятность наличия у
такого многочлена натуральных (или целых, или точных корней с с
«короткой» дробной частью) довольно мала, а формул для нахождения корней
уравнения степени, превышающей 4, не существует. Де-факто все дальнейшие
операции будут сводиться лишь к уточнению корней, интервалы которых
приблизительно известны заранее. Проще всего эти «приблизительные» корни
находить, используя графические методы.
Для нахождения корней многочлена существует несколько численных методов,
но мы остановимся на тех из них: методе итераций, методе хорд и
касательных и методе половинного деления.
2.2.1. Метод хорд и касательных (комбинированный)
Данный метод основан на построении схематического графика функции,
определении интервалов его пересечения с осью абсцисс и последующим
«сжатием» этого интервала при помощи строимых хорд и касательных к
графику этой функции.
Надо отметить, что существуют также отдельно метод хорд (дает значение
корня с недостатком) и метод касательных (с избытком). Однако
преимущество комбинированного метода заключается в «двустороннем сжатии»
рассматриваемого отрезка.
Рассмотрим следующий случай:
дана функция F(x) и построен ее график;
определена допустимая погрешность Q
на основании графика определен отрезок [a,b], на котром график функции
пересекает ось абсцисс, следовательно, на этом отрезке
рис.1
существует корень рассматриваемого многочлена. (обозначим его через A)
Дальнейший алгоритм сводится к следующим действиям:
строим касательную к графику функции в точке F(b)
вычисляем координату х пересечения касательной с осью абсцисс по формуле
(3) и обозначаем ее через b’
строим к графику функции хорду, проходящую через точки F(a) и F(b).
Вычисляем точку пересечения хорды с осью абсцисс по формуле (2) и
обозначаем ее через a’.
(2)
b’=b- ?b , где (3)
Таким образом мы получаем новый отрезок [a’ , b’], котроый (по
определениям хорды и касательной) по-прежнему содержи решение уравнения
A.
Теперь принимаем отрезок [a’,b’] за новый отрезок [a,b] и повторяем шаги
1-4 до тех пор, пока разность F(b)-F(a) не станет меньше первоначально
заложенной погрешности Q. Отметим также, что после этого рекомендуется в
качестве искомого решения взять среднее арифметическое F(a) и F(b).
Замечание к методу хорд и касательных. В рассмотренном случае
производная F’(x)>0, т.е. график «выпуклый» и b>a. При работе с каждым
отдельным случаем необходимо находить производные функции первого и
второго порядков и, сообразуясь с ее знаком, определять a и b.
Возможны четыре случая:
y y
F(x) F(x)
x x
а) б)
y y
F(x) F(x)
x x в) г)
а) F’(x) 0
б) F’(x) > 0
F’’(x) > 0
в) F’(x) 0
F’’(x) 0 С недостатком С избытком
F’(x)F’’(x) Q, то корень с указанной точностью найден. Если F(E) ma Then ma = curcell.Value
If curcell.Value 0 Then Ao = curcell.Value
Next curcell
DetectBorders = 1 + (ma * Ao)
End Function
UNIT2
Sub auto_open()
Sheets(“Лист1”).Select
Form_Main.Show
End Sub
FORM_ABOUT
Private Sub CommandButton1_Click()
Form_About.Hide
End Sub
FORM_KOEFF
Private Sub CommandButton1_Click()
ko = TextBox1.Value
st = TextBox2.Value
Select Case st
Case 0
Range(“A21”).Value = ko
Case 1
Range(“A1”) = ko
Case 2
Range(“A2”) = ko
Case 3
Range(“A3”) = ko
Case 4
Range(“A4”) = ko
Case 5
Range(“A5”) = ko
Case 6
Range(“A6”) = ko
Case 7
Range(“A7”) = ko
Case 8
Range(“A8”) = ko
Case 9
Range(“A9”) = ko
Case 10
Range(“A10”) = ko
Case 11
Range(“A11”) = ko
Case 12
Range(“A12”) = ko
Case 13
Range(“A13”) = ko
Case 14
Range(“A14”) = ko
Case 15
Range(“A15”) = ko
Case 16
Range(“A16”) = ko
Case 17
Range(“A17”) = ko
Case 18
Range(“A18”) = ko
Case 19
Range(“A19”) = ko
Case 20
Range(“A20”) = ko
Case Else
MsgBox (“Выход за пределы допустимых значений”)
st = st – 1
End Select
TextBox1.Value = 0
TextBox2.Value = st + 1
End Sub
Private Sub CommandButton2_Click()
Form_Koeff.Hide
End Sub
Private Sub CommandButton3_Click()
Range(“a1”).Value = 0
Range(“a2”).Value = 0
Range(“a3”).Value = 0
Range(“a4”).Value = 0
Range(“a5”).Value = 0
Range(“a6”).Value = 0
Range(“a7”).Value = 0
Range(“a8”).Value = 0
Range(“a9”).Value = 0
Range(“a10”).Value = 0
Range(“a11”).Value = 0
Range(“a12”).Value = 0
Range(“a13”).Value = 0
Range(“a14”).Value = 0
Range(“a15”).Value = 0
Range(“a16”).Value = 0
Range(“a17”).Value = 0
Range(“a18”).Value = 0
Range(“a19”).Value = 0
Range(“a20”).Value = 0
Range(“a21”).Value = 0
End Sub
Private Sub UserForm_initialize()
st = 0
ko = 0
TextBox1.Value = ko
TextBox2.Value = st
End Sub
FORM_KORNI
Private Sub CommandButton1_Click()
ListBox1.Clear
TextBox1.Value = 0
Form_Korni.Hide
End Sub
Private Sub CommandButton2_Click()
Range(“Toc”).Value = TextBox1.Value
Call FindKor
‘Call Perenos
End Sub
Sub FindKor()
Range(“Curright”) = Range(“Right”).Value
Range(“Curleft”) = -Range(“Right”).Value – 0.333
‘Range(“right”).Value = DetectBorders
Range(“Stepleft”).Value = Range(“right”).Value * (-1) – 0.333
Do
nashli = False
Call MoveLe
If Sgn(F(Range(“curleft”).Value)) = Sgn(F(Range(“curright”).Value)) Then
End If
If Sgn(F(Range(“curleft”).Value)) Sgn(F(Range(“curright”).Value))
Then
Do
‘ nashli = True
Range(“Curcenter”).Value = ((Range(“curleft”).Value) +
(Range(“curright”).Value)) / 2
If Abs(F(Range(“Curcenter”).Value)) > Range(“toc”).Value Then If
Sgn(F(Range(“curleft”).Value)) Sgn(F(Range(“curcenter”).Value)) Then
Range(“curright”).Value = Range(“curcenter”).Value Else:
Range(“curleft”).Value = Range(“curcenter”).Value
If Abs(F(Range(“Curcenter”).Value)) Range(“right”).Value Or nashli =
True
End Sub
Sub Horda_Kas()
‘Sub FindKor()
Range(“Curright”) = Range(“Right”).Value
Range(“Curleft”) = -Range(“Right”).Value – 0.333
‘Range(“right”).Value = DetectBorders
Range(“Stepleft”).Value = Range(“right”).Value * (-1) – 0.333
Do
MoveLe
If Sgn(F(Range(“curleft”).Value)) Sgn(F(Range(“curright”).Value))
Then
Do
‘ nashli = True
If F1(Range(“curleft”).Value) * F2(Range(“curleft”).Value) > 0 Then
Range(“curleft”).Value = Range(“curleft”).Value –
((Range(“curright”).Value – Range(“curleft”).Value) *
(F(Range(“Curleft”).Value) / (F(Range(“Curright”).Value –
F(Range(“Curleft”).Value)))))
Range(“Curright”).Value = Range(“curright”).Value –
F(Range(“curright”).Value) / F1(Range(“curright”).Value)
End If
If F1(Range(“curleft”).Value) * F2(Range(“curleft”).Value) 0 Then
ListBox1.AddItem (((Range(“Curleft”).Value) + (Range(“Curright”).Value))
/ 2)
‘If
((Range(“Curleft”).Value) + (Range(“Curright”).Value)) Range(“right”).Value Or nashli =
True
End Sub
Sub MoveLe()
Range(“stepleft”).Value = Range(“stepleft”).Value + 0.333
Range(“curLeft”).Value = Range(“stepleft”).Value
Range(“Curright”).Value = Range(“Curleft”).Value + 0.333
Range(“Curcenter”).Value = ((Range(“curleft”).Value) +
(Range(“curright”).Value)) / 2
End Sub
Private Sub CommandButton3_Click()
Horda_Kas
End Sub
Private Sub UserForm_Deactivate()
ListBox1.Clear
TextBox1.Value = 0
End Sub
Sub Perenos()
Range(“a1”).Value = Range(“L1”).Value
Range(“a2”).Value = Range(“L2”).Value
Range(“a3”).Value = Range(“L3”).Value
Range(“a4”).Value = Range(“L4”).Value
Range(“a5”).Value = Range(“L5”).Value
Range(“a6”).Value = Range(“L6”).Value
Range(“a7”).Value = Range(“L7”).Value
Range(“a8”).Value = Range(“L8”).Value
Range(“a9”).Value = Range(“L9”).Value
Range(“a10”).Value = Range(“L10”).Value
Range(“a11”).Value = Range(“L11”).Value
Range(“a12”).Value = Range(“L12”).Value
Range(“a13”).Value = Range(“L13”).Value
Range(“a14”).Value = Range(“L14”).Value
Range(“a15”).Value = Range(“L15”).Value
Range(“a16”).Value = Range(“L16”).Value
Range(“a17”).Value = Range(“L17”).Value
Range(“a18”).Value = Range(“L18”).Value
Range(“a19”).Value = Range(“L19”).Value
End Sub
FORM_MAIN
Private Sub CommandButton1_Click()
Form_Koeff.Show
End Sub
Private Sub CommandButton2_Click()
Form_Mnogo.Show
End Sub
Private Sub CommandButton3_Click()
Gra
Form_Main.Height = 84
Sheets(“D1”).Select
Form_WP??????????????
Sheets(“Лист1”).Select
End Sub
Private Sub CommandButton4_Click()
Form_Korni.Show
End Sub
Private Sub CommandButton5_Click()
Application.Quit
End Sub
Private Sub CommandButton7_Click()
Form_About.Show
End Sub
Private Sub CommandButton8_Click()
ActiveWorkbook.Save
End Sub
Private Sub UserForm_initialize()
Sheets(“Лист1”).Select
Form_Main.Height = 360
End Sub
FORM_MNOGO
Dim mn As String
Private Sub CommandButton1_Click()
Form_Mnogo.Hide
End Sub
Private Sub UserForm_activate()
mn = “F(x)=”
If Range(“a20”) > 0 Then mn = mn + Range(“a20”).Text + “X^20”
If Range(“a20”) 0 Then mn = mn + ” + ” + Range(“a19”).Text + “X^19”
If Range(“a19”) 0 Then mn = mn + ” + ” + Range(“a18”).Text + “X^18”
If Range(“a18”) 0 Then mn = mn + ” + ” + Range(“a17”).Text + “X^17”
If Range(“a17”) 0 Then mn = mn + ” + ” + Range(“a16”).Text + “X^16”
If Range(“a16”) 0 Then mn = mn + ” + ” + Range(“a15”).Text + “X^15”
If Range(“a15”) 0 Then mn = mn + ” + ” + Range(“a14”).Text + “X^14”
If Range(“a14”) 0 Then mn = mn + ” + ” + Range(“a13”).Text + “X^13”
If Range(“a13”) 0 Then mn = mn + ” + ” + Range(“a12”).Text + “X^12”
If Range(“a12”) 0 Then mn = mn + ” + ” + Range(“a11”).Text + “X^11”
If Range(“a11”) 0 Then mn = mn + ” + ” + Range(“a10”).Text + “X^10”
If Range(“a10”) 0 Then mn = mn + ” + ” + Range(“a9”).Text + “X^9”
If Range(“a9”) 0 Then mn = mn + ” + ” + Range(“a8”).Text + “X^8”
If Range(“a8”) 0 Then mn = mn + ” + ” + Range(“a7”).Text + “X^7”
If Range(“a7”) 0 Then mn = mn + ” + ” + Range(“a6”).Text + “X^6”
If Range(“a6”) 0 Then mn = mn + ” + ” + Range(“a5”).Text + “X^5”
If Range(“a5”) 0 Then mn = mn + ” + ” + Range(“a4”).Text + “X^4”
If Range(“a4”) 0 Then mn = mn + ” + ” + Range(“a3”).Text + “X^3”
If Range(“a3”) 0 Then mn = mn + ” + ” + Range(“a2”).Text + “X^2”
If Range(“a2”) 0 Then mn = mn + ” + ” + Range(“a1”).Text + “X”
If Range(“a1”) 0 Then mn = mn + ” + ” + Range(“a21”).Text
If Range(“a21”) (хорда с избытком, касательная с недостатком0)
Начало
Нашли опечатку? Выделите и нажмите CTRL+Enter