.

Сверхпроводимость проводников

Язык: русский
Формат: реферат
Тип документа: Word Doc
0 884
Скачать документ

План реферата

1.Свойство сверхпроводимого состояния.

2.Сверхпроводник в магнитном поле.

3.Изотермические свойства.

4.Изотопический эффект.

5.Квантовая основа.

6.Условия сверхпроводимости.

а.Сверхпроводники I и II рода.

б.Разрушение током.

в.Новые вещества.

7.Некоторые применения сверхпроводимости..

Литература.

В 1911 г. Камерлинг-Оннес открыл явление сверхпроводимости,изучение
которого интенсивно продолжается до наших дней и составляет одно из
важнейших направлений физики твердого тела.Оказалось, что при
температуре,близкой к 40К,электрическое сопротивление ртути скачком
обращается в нуль .

Многие металлы и металлические сплавы при температурах,близких к
абсолютному нулю, переходят в особое сверхпроводящее состояние,наиболее
поразительным свойством которого является с в е р х п р о в о д и м о с
т ь- полное отсутствие сопротивления постоянному электрическому
току.Наведенный в сверхпроводящем кольце ток сохраняется неизменным
практически бесконечно долго – в течение нескольких лет не удается
обнаружить сколько-нибудь заметного затухания этого тока.Этот
эксперимент провел в1959 г. американский ученый физик Коллинз.

Эффект сверхпроводимости состоит в исчезновении электрического
сопротивления при конечной, отличной от О0 К, температуре ( критическая
температура- Тк ).

Открытие Камерлинга-Оннеса повлекло исследования разных веществ
–сверхпроводников и их свойств. Были отмечены резкая аномалия магнитных,
тепловых и ряда других свойств, так что правильнее говорить не только о
сверпроводимости, а об особом, наблюдаемом при низких температурах
состоянии вещества .

Сейчас выявлена целая группа веществ –сверхпровод – ников ( В
1975 их было >500).Самой высокой критической температурой среди чистых
веществ обладает ниобий ( Тк =9,220 К), а наиболее низкой – иридий ( Т к
= 0,1400 К).

Сложное соединение ,синтизированное в 1967 г.,сохраняет
сверхпроводимость до 20,10 К, в 1973 г. рекорд равнялся 22,30 К.

Критическая температура зависит не только от химического состава
вещества, но и от структуры самого кристала.Например ,серое олово
является полупроводником, а белое олово- металлом, способным к тому же
при температуре,равной 3,720 К,переходить в сверхпроводящее состояние.

Бериллий–сверхпроводник в виде тонкой пленки. Некоторые вещества
становятся сверхпроводниками при высоком давлении ( Ва с Т к=50 К под
давлением ~ 150 кбар).

Из всего следует вывод,что сверхпроводимость представляет собой
коллективный эффект,связанный со структурой всего образца.

Переход металла в сверхпроводящее состояние и обратно происходит при
тех значениях температуры и напряженности магнитного поля, которые
соответствуют точкам на кривой зависимости Н к от температуры (рис 1.)

Учитывая обратимость перехода и различие свойств металла в
сверхпроводящем и нормальном состояниях, этот переход можно
рассматривать как фазовый переход между двумя различными состояниями
одного и того же вещества : n-фазой( нормальное состояние) и s-фазой
(сверхпроводящее состояние).

Сверхпроводник в магнитном поле.

1. В 1933 г. Мейсснером было открыто одно из свойств
сверхпроводников(эффект Мейсснера).Оказалось,что магнитное поле не
проникает в толщу сверхпроводящего образца.Если этот образец при
температурах более высоких,чем Тк, то в нем , как и во всяком
нормальном металле,помещенном во внешнем поле .напряженность будет
отличной от нуля. Не выключая внешнего магнитного поля, начнем
постепенно понижать температуру.Тогда окажется ,что в момент перехода в
сверхпроводящее

состояние магнитное поле вытолкнется из образца и станет справедливым
равенство В = 0 ( В- магнитная индукция,равная, по определению,средней
напряженности магнитного поля в веществе).При включении внешнего поля Н
в веществе появляется отличная от нуля индукция В, равная В= ?Н.
Коэффициент и называется магнитной проницаемостью вещества.При ??(более точный расчет дает условие ?>?1/2),то образование слоистой
структуры энеогетически невыгодно и сверхпроводник существует в виде
сплошной s-фазы.

Такие сверхпроводники называются сверхпроводимостью I рода.К ним
принадлежат почти все чистые сверхпроводники .Если же выполняется
условие ?1/2,то энергетически выгодно образование слоистой структуры и сверхпроводники находятся в смешанном состоянии.Такие сверхпроводники называются свехпроводимостью II рода.К ним относятся многие сверхпроводящие сплавы и сверхпроводники, загрязненные примесями. 2.Сверхпроводимость может разрушаться током.. Если сверхпроводник II рода поместить в сильное внешнее магнитное поле, то критический ток в нем окажется равным 0,т.е. протекание сквозь угодно малого тока будет сопровождаться тепловыми потерями.Возникает система вихревых нитей и при пропуске тока происходит их взаимодействие.Опытным путем доказано,что жесткие сверхпроводники выдерживают сильные магнитные поля,а благодаря неоднородностям структуры через них можно пропускать большие токи. 3.Созданы новые сверхпроводящие вещества , дающие возможность получать поля около 200 кгс. Перспектива открытий в этой области неограничена. Применение сверхпроводимости. Продолжается поиск материалов,позволяющих получать все более мощные магнитные поля. Соленоиды создают не просто сильные магнитные поля.Возможно получение однородных полей в достаточно большой области пространства,что весьма важно при проведении научных исследований, посвященных изучению свойств вещества в магнитном поле. Наиболее заманчиво применение сверхпроводников в обмотках соленоидов для получения сверхсильных магнитных полей- порядка 100 000э и выше. Сильные магнитные поля необходимы,например, при управлении плазменными пучками в установках для исследования и возможного получения управляемых термоядерных реакций и в современных ускорителях заряженных частиц высоких энергий. В этом случае энергию надо затрачивать только на охлаждение обмоток до температур ниже критической. Каждый элемент провода с током в такой обмотке находится в очень сильном магнитном поле соседних витков,поэтому целесообразно применять сверхпроводники II рода,выдерживающие большие магнитные поля. Для этих целей выявлены сверхпроводимость III рода( ниобий-цирконий или ниобий-олово). Сверхпроводящие сплавы используются для получения сверхмощных постоянных магнитов. В отличие от обычного электромагнита сверхпров. не нуждается во внешнем источнике питания,поскольку протекающий в нем ток не испытывает электрического сопротивления. Другим примером применения сверхпроводников является клистрон-управляющий элемент в электрических цепях.На проводник,по которому течет электрический ток, наматывается несколько витков также сверхпроводящей проволоки, но обладающей более высоким значением критического поля Н к.1Меняя ток в витках,можно создать критическое поле в управляемом сверхпроводнике, что приведет к его “запиранию” вследствие потери им С. Много исследований посвящается вопросу об использовании сверхпров. при создании вычислительных машин.Сверхпроводящий ток является незатухающим.Это позволяет использовать его в качестве идеального запоминающего устройства,хранящего большие и легко считываемые запасы информации. Скорость “ вспоминания” сверхпроводящих устройств значительно превышает возможности человеческого мозга.Они в состоянии всего лишь за 10-6 сек выбрать нужную информацию из 1011 ее единиц. В вычислительной технике используется двоичная система.Двойственность сверхпроводников( они могут находиться или в нормальном,или в сверхпроводящем состоянии),быстрота их перехода под действием темпера- туры или магнитного поля из одного состояния в другое позволяют использовать их в качестве элементов вычислительных машин. И в качестве переключающих устройств,работающих с очень высокой скоростью при малых затратах мощности, сверхпроводники идеальны. Одно из таких устройств –так называемый проволочный криотрон. Слово ”криотрон” греческого происхождения (cryo- холод).Изобретен этот прибор американским ученым Баком.Прибор состоит из проволоки, сделанной,например,из свинца или тантала, по которой протекает сверхпроводящий ток .Эта проволока называется клапаном.На нее намотана более тонкая –из ниобия.Катушка,образованная этим тонким проводом, называется управляющей.При протекании по ней достаточно большого тока сверхпроводимость в клапане разрушается. Ниобий был выбран в качестве материала,из которого изготовляется управляющий провод,по той простой причине,что сверхпров. сохраняетсся в нем при достаточно сильных магнитных полях.Критические поля свинца или тантала,образующих клапан,являются весьма малыми ,и сверхпров.в них поэтому разрушается при пропускании в ниобиевой катушке достаточно слабого тока. Сопротивление в клапане меняется при этом скачком от нуля до некоторого конечного значенитя.Уменьшением тока в управляемом проводе снова восстанавливается сверхпроводящие состояния свинца или тантала. Скорость переключения в клиотронах достигает двух наносекунд (2*10-9сек).Высокая скорость в сочетании с простотой устройства и лежит в основе использования сверхпроводящих криотронов в вычислительной технике.ЭВМ,использующая сверхпроводящие устройства,выделяется своей необычной компактностью. Вполне возможным является создание миниатюрного сверхпроводящего триода.Его можно представить себе состоящим всего из трех наклеенных друг на друга металлических пленок , причем роль сетки обычной радиолампы играет средняя полоска , в которой регулируется ток и создаваемое им магнитное поле. Сверхпроводник ,в толщу которого не проникает магнитное поле, всегда окружен магнитной “ подушкой”. Эффект механического отталкивания используется для создания опор без трения.Сверхпроводящая сфера благодаря диамагнитному эффекту висит над кольцом,в котором циркулирует незатухающий ток.Сила тяжести при этом уравновешивается магнитной “ подушкой”,создаваемой сверхпров . током.Оказывается,что могут “парить” довольно тяжелые предметы.Так,в одном из опытов был подвешен свинцовый цилиндр весом 5 кг. Устройство, в котором используется описанное явление,называется сверхпроводящим подвесом.Такие подвесы могут использоваться в гироскопах,моторах и в ряде других устройств.Принцип механического отталкивания положен в основу создагния электрических машин,к.п.д. которых благодаря замечательным свойствам сверхпроводников равена 100%. В этих машинах ротор выполнен в виде шестиугольного сверхпроводящего стаканчика.Два магнитика ,вращающиеся по окружности статора,отталкивают от себя магнитной “подушкой” сверхпроводящий ротор.Последний при этом приходит во вращение, скорость которого доходит до 20 000 об/мин и в принципе может быть увеличена до большого значения. Самая заманчивая перспектива использования эффекта механического отталкивания связана с работами по созданию “сверхпроводящей “ железной дороги.Японцы первыми создали модель железной дороги на магнитной подушке с вагонами ,в которых находятся сверхпроводящие магниты.Вагон весом 2 т и размером 4х1,5 х 0,8 м двигался над путепроводом со скоростью 50 км/час.Длина пути составляла 400м.Далее путь увеличили до 7 км.Транспорт на “магнитной подушке “ сможет двигаться со скоростью 500 км/ час!Эти разработки ведутся во всех странах Европы. У нас разработан проект такой дороги между Петербургом и Москвой. Это явление в лабораторных условиях рассмотрел в замечательном эксперименте В.К.Аркадьев,назвавший его “ гроб Магомета”.Над металличе- ским кольцом, в котором циркулирует такой ток, поместить в сверхпроводящую сферу, то на ее поверхности индуцируется сверхпроводящий ток.Его возникновение вследствие диамагнитного эффекта приведет к появлению сил отталкивания между кольцом и сферой.В результате сфера оказывается висящей над кольцом на высоте ,определяемой равенством силы отталкивания и веса сферы .Подобный эффект механического отталкивания наблюдается и в том случае , когда над сверхпроводящим кольцом помещается постоянный магнит,без видимой поддержки висящий над кольцом,в котором циркулируют индуцированные магнитом незатухающие сверхпроводящие токи. Сверхпроводящие трансформаторы.Отсутствие в них тепловых потерь; сверхпроводящие трансформаторы при большой мощности (до 1 000 000 квт) оказываются значительно более компактыми по сравнению с обычными. В них можно не использовать сталь в качестве магнитного материала. Создаваемые сверхпроводниками магнитные поля намного превосходят значения напряженности,реализуемые в стальных материалах. В последнее время в радиотехнике начинают использовать сверхпроводящие объемные резонаторы.Добротность резонатора обратно пропорциональна электрическому сопротивлению его стенок.Ясно,что применение сверхпроводников, не обладающих электрическим сопротивлением, является с этой точки зрения весьма перспективным. Так, обычный прямоугольный свинцовый резонатор при Т = 3000К и частоте 1010 гц имеет добротность Q= 2*103. Тот же резонатор, находящийся в сверхпроводящем состоянии (Т=4,20К),характеризуется добротностью, достигающей Q= 4*108. Компактность мсожет использоваться в космическом корабле для создания магнитной противорадиационной защиты.Космонавт должен взять в космос “ низкие температуры” и сверхпроводящий соленоид. Квантование магнитного потока в сверхпроводниках используется для создания магнитомеров для измерения слабых магнитных полей.Приборы такого вида называются квидами.Они фиксируют изменения потока Например, если площадь сечения сквида равна 0,1 см 2,то можно измерять поля ~10-10 э! Катушка с полем переменного тока Тонкая пленка (~10-6 cм толщиной) Рис.6 Изображенный сквид представляет собой два тонких сверхпроводящих полуцилиндра, полученных напылением на катушку.Эти полуцилиндры соединены тонким мостиком, образующим слабую связь.Квантование этого магнитного потока приводит к ступенчатому характеру зависимости потока от внешнего магнитного поля.Это изменение потока генерирует сигнал в резонансном колебательном контуре.С помощью этих сигналов и регистрируются слабые изменения магнитного поля. Сквиды используются для снятия магнитокардиограмм, т.е. для исследования сигналов от магнитного поля , создаваемого при работе сердца пациента.Сквид располагается в криостате,на расстоянии нескольких сантиметров от сердца пациента.Регистрируются резкие сигналы ,идущие от сердца.Ясно,что этот метод важен для медицинских исследований. Квантование магнитного потока может быть использовано для создания пространства,в котором вообще отсутствует магнитное поле.Если охладить цилиндр,внутри которого имеется слабое магнитное поле, до температуры ниже критической, то внутри цилиндра “заморозится” некоторый магнитный поток.Если после этого мы начнем постепенно увеличивать радиус цилиндра,то число квантов потока не изменится, но увеличение площади сечения повлечет за собой соответствующее уменьшение напряженности поля.Если использовать несколько вложенных друг в друга цилиндров.то описанным путем можно в конце концов добиться того, что во внутреннем цилиндре не будет содержаться ни одного кванта потока. Таким образом, возникает область,не содержащая магнитного поля, т.е. создается идеальный магнитный экран. Интересным прибором является также сверхпроводящий болометр.Он предназначается для измерения радиации в инфракрасной области спектра. Основной частью такого болометра является тонкая проволока из сверхпроводника,находящаяся при температуре,близкой к критической. Под действием падающей радиации, которая поглащается металлом,температура повышается и становится больше Тк.При этом сверхпроводимость разрушается,и в проволоке скачком восстанавливается нормальное сопротивление. Это приводит к легко регистрируемому падению напряжения.Резкость перехода в нормальное состояние делает сверхпроводящий болометр весьма чувствительным прибором.Порог чувствительности его составляет 10-10–10-12 вт. Техническая сверхпроводимость находится в развитии и составляет часть технической физики. Рис.1 Зависимость критического магнитного поля Нк от температуры Т. Рис.2

Нашли опечатку? Выделите и нажмите CTRL+Enter

Похожие документы
Обсуждение

Оставить комментарий

avatar
  Подписаться  
Уведомление о
Заказать реферат!
UkrReferat.com. Всі права захищені. 2000-2020