.

Класифікація вакцин (реферат)

Язык: украинский
Формат: реферат
Тип документа: Word Doc
197 1741
Скачать документ

РЕФЕРАТ

на тему:

“КЛАСИФІКАЦІЯ ВАКЦИН”

1. Поняття і класифікація вакцин

Вакцини (лат. vacca — корова) — препарати, що складаються з ослаблених,
вбитих збудників хвороб чи продуктів їхньої життєдіяльності. Ці
специфічні речовини дістали назву від противіспяного препарату,
виготовленого з вірусу коров’ячої віспи. Метод щеплень за допомогою
вакцин називають вакцинацією, або імунізацією.

Творцем наукової теорії запобігання інфекційним захворюванням за
допомогою виготовлених в лабораторії вакцин був засновник медичної
мікробіології Л.Пастер. Вперше вакцинацію було здійснено в 1796 р.
англійським лікарем Е.Дженнером, який штучно прищепив дитині коров’ячу
віспу, в результаті чого ця дитина набула імунітету до натуральної
віспи.

Вакцини врятували людство не тільки від віспи. Переможено тяжку дитячу
хворобу поліомієліт, вакцина БЦЖ виявилася досить ефективною проти
туберкульозу. За допомогою вбитих мікробів або виділених з них антигенів
створюється стійкий імунітет до кору, коклюшу, правця, газової гангрени,
дифтерії та багатьох інших інфекційних захворювань. Велика надія
покладається на вакцинопрофі-лактику у боротьбі з ВІЛ-інфекцією,
вірусними гепатитами і малярією.

Сучасні вакцини поділяють на чотири групи:

а) вакцини, які виготовляють із живих збудників з ослабленою
вірулентністю (проти віспи, туберкульозу, чуми, сибірки, сказу, грипу,
полімієліту та ін.);

б) вакцини з убитих патогенних мікробів (холерна, черевнотифозна,
коклюшна, лептоспірозна, поліомієлітна тощо);

в) анатоксини (виготовляються з екзотоксинів відповідних збудників
обробкою їх 0,3-0,4 %-м розчином формаліну і витримуванням при
температурі 38-40 °С протягом 3—4 тижнів). Добуті у такий спосіб
дифтерійний, правцевий, стафілококовий, холерний та інші анатоксини
знайшли широке застосування в практиці;

г) хімічні вакцини (їх виготовляють не з цілих бактеріальних клітин, а
із хімічних комплексів, добутих шляхом обробки суспензії клітин
спеціальними методами; наприклад, для профілактики черевного тифу і
правця застосовують хімічну сорбовану вакцину з О- і Vi- антигенів
черевнотифозних бактерій і очищеного концентрованого правцевого
анатоксину).

Інактивовані (убиті)  вакцини 

Інактивовані вакцини одержують шляхом впливу на  мікроорганізми 
хімічним шляхом чи нагріванням. Такі  вакцини  є досить стабільними і
безпечними, тому що не можуть викликати реверсію вірулентності. Вони
часто не вимагають збереження на холоді, що зручно в практичному
використанні. Однак у цих  вакцин  мається і ряд недоліків, зокрема,
вони стимулюють більш слабку імунну відповідь і вимагають застосування
декількох доз (бустерні імунізації).

Вони містять або убитий цілий  мікроорганізм  (наприклад цельноклеточная
 вакцина  проти коклюшу, інактивована  вакцина  проти сказу,  вакцина 
проти вірусного гепатиту А), або компоненти клітинної чи стінки інших
частин збудника, як наприклад в ацеллюлярній вакцині проти коклюшу,
кон’югованій вакцині  проти гемофилусной чи інфекції у вакцині проти
менінгококковій інфекції. Їх убивають фізичними (температура, радіація,
ультрафіолетове світло) чи хімічними (спирт, формальдегід) методами.
Такі  вакцини  реактогени, застосовуються мало (коклюшна, проти гепатиту
А).

Інактивовані  вакцини  також є корпускулярними. Аналізуючи властивості
корпускулярних  вакцин  також варто виділити, як позитивні так і їхні
негативні якості. Позитивні сторони: Корпускулярні убиті  вакцини  легше
дозувати, краще очищати, вони довгостроково зберігаються і менш чуттєві
до температурних коливань. Негативні сторони:  вакцина  корпускулярна –
містить 99 % баласту і тому реактогена, крім того, містить агент,
використовуваний для умертвіння мікробних кліток (фенол). Ще одним
недоліком інактивированной вакцини є те, що мікробний штам не
приживляється, тому вакцина слабка і вакцинація проводиться в 2 чи 3
прийоми, вимагає частих ревакцинацій (АКДС), що сутужніше в плані
організації в порівнянні з живими вакцинами. Інактивовані вакцини
випускають як у сухому (ліофілізованному), так і в рідкому виді.
Багато  мікроорганізмів, що викликають захворювання в людини, небезпечні
тим, що виділяють екзотоксини, що є основними патогенетичними факторами
захворювання (наприклад, дифтерія, стовбняк). Анатоксини,
використовувані як  вакцини, індукують специфічна імунна відповідь. Для
одержання вакцин  токсини найчастіше знешкоджують за допомогою
формаліну.

Живі  вакцини

Вони містять ослаблений живий  мікроорганізм. Прикладом можуть служити
 вакцини  проти поліомієліту, кору, паротиту, чи краснухи туберкульозу.
Можуть бути отримані шляхом селекції (БЦЖ, грипозна). Вони здатні
розмножуватися в організмі і викликати вакцинальний процес, формуючи
несприйнятливість. Утрата вірулентності в таких штамів закріплена
генетично, однак в облич з імунодефіцитами можуть виникнути серйозні
проблеми. Як правило, живі  вакцини  є корпускулярними.

Живі  вакцини  одержують шляхом штучного аттенуирования (ослаблення
штаму (BCG – 200-300 пасажів на жовчному бульйоні, ЖВС – пасаж на
тканині бруньок зелених мавп) або відбираючи природні авирулентні штами.
В даний час можливий шлях створення живих вакцин шляхом генної інженерії
на рівні хромосом з використанням рестриктаз. Отримані штами будуть мати
властивості обох збудників, хромосоми яких були узяті для синтезу.
Аналізуючи властивості живих вакцин варто виділити, як позитивні так і
їхні негативні якості.

Позитивні сторони: по механізму дії на організм нагадують “дикий” штам,
може приживлятися в організмі і довгостроково зберігати імунітет (для
коревої  вакцини  вакцинація в 12 мес. і ревакцинація в 6 років),
витісняючи “дикий” штам. Використовуються невеликі дози для вакцинації
(звичайно однократна) і тому вакцинацію легко проводити організаційно.
Останнє дозволяє рекомендувати даний тип  вакцин  для подальшого
використання.

Негативні сторони: живаючи  вакцина  корпускулярна – містить 99% баласту
і тому звичайно досить реактогенная, крім того, вона здатна викликати
мутації кліток організму (хромосомні аберації), що особливо небезпечно у
відношенні полових кліток. Живі  вакцини  містять вируси-загрязнители
(контаминанти), особливо це небезпечно у відношенні обезьяннего СПИДа й
онковирусов. На жаль, живі  вакцини  важко дозуються і піддаються
биоконтролю, легко чуттєві до дії високих температур і вимагають
неухильного дотримання холодового ланцюга.

Хоча живі  вакцини вимагають спеціальних умов збереження, вони
продуцируют досить ефективний клітинний і гуморальний імунітет і
звичайно вимагають лише одне бустерное введення. Більшість живих  вакцин
уводиться парентерально (за винятком полиомиелитной  вакцини).

На тлі переваг живих  вакцин  мається й одне застереження, а саме:
можливість реверсії вірулентних форм, що може стати причиною
захворювання вакцинируемого. З цієї причини живі  вакцини повинні бути
ретельно протестировани. Пацієнти з імунодефіцитами (получающие
іммуносупрессивную терапію, при СПИДе і пухлинах) не повинні одержувати
такі  вакцини.

Прикладом живих  вакцин  можуть служити  вакцини  для профілактики
краснухи (Рудивакс), кору (Рувакс), поліомієліту (Поліпро Себин Веро),
туберкульозу, паротиту (Имовакс Орейон). Живі  вакцини  випускаються в
ліофілізованому виді (крім полиомиелитной).

Асоційовані вакцини

Вакцини різних типів, що містять кілька компонентів (АКДС).

Корпускулярні вакцини

– являють собою чи бактерії віруси, інактивированні хімічним (формалін,
спирт, фенол) чи фізичним (тепло, ультрафіолетове опромінення) впливом.
Прикладами корпускулярних  вакцин  є: коклюшна (як компонент АКДС і
Тетракок), антирабическая, лептоспирозная, грипозні цельновирионні,
вакцини проти енцефаліту, проти гепатиту А (Аваксим), інактивирована
полиовакцина (Имовакс Поліпро, чи як компонент вакцини Тетракок).

Хімічні  вакцини

Містять компоненти клітинної чи стінки інших частин збудника, як
наприклад в ацеллюлярній  вакцині  проти коклюшу, коньюгированной
 вакцині  проти гемофільної інфекції чи у  вакцині  проти
менінгококкової інфекції.

Хімічні вакцини- створюються з антигенних компонентів, витягнутих з
мікробної клітки. Виділяють ті антигени, що визначають імуногенні
характеристики  мікроорганізму. До таких  вакцин  відносяться:
полісахаридні  вакцини (Менинго А+З, Акт-ХІБ, Пневмо 23, Тифим Ви),
ацеллюлярні коклюшні  вакцини.

Биосинтетические  вакцини 

У 80-і роки зародився новий напрямок, що сьогодні успішно розвивається,
– це розробка биосинтетических  вакцин  –  вакцин  майбутнього.

Биосинтетические  вакцини  – це  вакцини, отримані методами генної
інженерії і являють собою штучно створені антигенні детермінанти
 мікроорганізмів. Прикладом може служити рекомбинантная  вакцина  проти
вірусного гепатиту B,  вакцина  проти ротавирусной інфекції. Для їхнього
 одержання  використовують дріжджові клітки в культурі, у яких
убудовують вирізаний ген, що кодує вироблення необхідного для
 одержання   вакцини  протеїн, що потім виділяється в чистому виді.

На сучасному етапі розвитку імунології як фундаментальної
медико-біологічної науки стала очевидної необхідність створення
принципово нових підходів до конструювання  вакцин  на основі знань про
антигенну структуру патогена і про імунну відповідь організму на патоген
і його компоненти.

Биосинтетические  вакцини  являють собою синтезовані з амінокислот
пептидні фрагменти, що відповідають амінокислотної послідовності тим
структурам вірусного (бактеріального) білка, що розпізнаються імунною
системою і викликають імунну відповідь. Важливою перевагою синтетичних
 вакцин  у порівнянні з традиційними є те, що вони не містять бактерій і
вірусів, продуктів їхньої життєдіяльності і викликають імунну відповідь
вузької специфічності. Крім того, виключаються труднощі вирощування
вірусів, збереження і можливості реплікації в організмі вакцинируемого у
випадку використання живих  вакцин. При створенні даного типу  вакцин 
можна приєднувати до носія кілька різних пептидів, вибирати найбільш
імуногенні з них для коплексування з носієм. Разом з тим, синтетичні
 вакцини менш ефективні, у порівнянні з традиційними, тому що багато
ділянок вірусів виявляють вариабельность у плані іммуногенности і дають
меншу іммуногенність, ніж нативний вірус. Однак, використання одного чи
двох імуногенних білків замість цілого збудника забезпечує формування
імунітету при значному зниженні реактогенности  вакцини  і її побічної
дії.

Векторні (рекомбинантні) вакцини 

Вакцини, отримані методами генної інженерії. Суть методу: гени
вірулентного  мікроорганізму, відповідальний за синтез протективних
антигенів, вбудовують у геном якого – або нешкідливого  мікроорганізму,
що при культивуванні продукує і накопичує відповідний антиген. Прикладом
може служити рекомбінантна  вакцина  проти вірусного гепатиту B,
 вакцина  проти ротавірусной інфекції. Нарешті, маються позитивні
результати використання т.зв. векторних  вакцин, коли на носій – живий
рекомбинантний вірус осповакцини (вектор) наносяться поверхневі білки
двох вірусів: глікопротеїн D вірусу простого герпеса і гемагглютинин
вірусу грипу А. Відбувається необмежена реплікація вектора і
розвивається адекватна імунна відповідь проти вірусної інфекції обох
типів.

  Lantigen B стимулює антителообразовані Ig A у крові і слині, але
саме головне, що при подальшому спостереженні у вакцинованих відзначене
зменшення числа випадків захворювання, а якщо вони і виникали, те
протікали легше. Клінічна артина хвороби, таким чином є найбільш
об’єктивним показником вакцинації.

Рекомбинантні  вакцини  – для виробництва цих  вакцин  застосовують
рекомбинантную технологію, убудовуючи генетичний матеріал
 мікроорганізму   в дріжджові клітки, продуцирующие антиген. Після
культивування дріжджів з них виділяють потрібний антиген, очищають і
готують вакцину. Прикладом таких  вакцин  може служити  вакцина проти
гепатиту В (Еувакс У).

Рибосомальні  вакцини

Для  одержання  такого виду  вакцин  використовують рибосоми, що
знаходяться в кожній клітці. Рибосоми – це органелли, продукуючі білок
по матриці – і-РНК. Виділені рибосоми з матрицею в чистому виді і
представляють  вакцину. Прикладом може служити бронхіальна і
дизентерійна вакцини  (наприклад, ИРС-19, Бронхо-мунал, Рибомунил).

Розробка і виготовлення сучасних  вакцин  виробляється відповідно до
високих вимог до їхньої якості, у першу чергу, нешкідливості для
щеплених. Звичайно такі вимоги ґрунтуються на рекомендаціях Всесвітньої
Організації Охорони здоров’я, що залучає для їхнього складання самих
авторитетних фахівців з різних країн світу. “Ідеальної”  вакцин  міг би
вважатися препарат, що володіє такими якостями, як:

1. повною нешкідливістю для щеплених, а у випадку живих  вакцин  – і
для облич, до яких вакцинний  мікроорганізм  попадає в результаті
контактів із щепленими;

2. здатністю викликати стійкий імунітет після мінімальної кількості
введень (не більш трьох);

3. можливістю введення в організм способом, що виключає парентеральні
маніпуляції, наприклад, нанесенням на слизуваті оболонки;

4. достатньою стабільністю, щоб не допустити погіршення властивостей
 вакцини  при транспортуванні і збереженні в умовах прищеплювального
пункту;

5. помірною ціною, що не перешкоджала б масовому застосуванню  вакцини.

Вакцини застосовуються не тільки для профілактики, а й для лікування
хронічних процесів, що мають млявий перебіг, — дизентерії, бруцельозу,
фурункульозу, гонореї та інших хвороб. З цією метою використовують
вакцини з убитих мікробів, анатоксини, екстракти із стафілококів тощо.
Досить ефективним виявилось використання полівалентної стафілококової,
стрептококової, гонококової, протибруцельозної вакцин.

Вважають, що найбільш перспективними є комбіновані полівакцини, що
містять різні антигени. За допомогою таких асоційованих полівакцин можна
буде виробляти антибактеріальний, антитоксичний і противірусний
імунітет. При специфічній профілактиці інфекційних хвороб часто
використовують моновакцини, дивакцини і тривакцини. Останнім часом
почали застосовувати рекомбінантні вакцини з рекомбінантних штамів
бактерій і вірусів.

При орнітозі, актиномікозі, коліентеритах, стафілококових та інших
захворюваннях хороші результати дає комплексна імуноанти-біотикотерапія.
Ефективним виявилось також застосування аутовак-цини, тобто вакцини,
виготовленої з культури бактерій, виділеної від даного хворого.
Вакцинація проводиться різними способами: на-шкірно, підшкірно, через
рот, у слизову оболонку носа тощо.

Препарати, що містять антитіла, які згубно діють на мікроби або
нейтралізують їхні токсичні продукти, дістали назву сироваток.
Виробляють їх із крові тварин, яких імунізують певним антигеном (живі чи
вбиті мікроби, віруси, мікробні, тваринні та рослинні токсини).
Лікувальні і профілактичні сироватки випускають в очищеному вигляді (без
баластних білків, які не містять специфічних антитіл).

Виготовлення вакцин

У залежності від природи іммуногена принципи виготовлення вакцини
відрізняються:

1. цільномікробні чи цільновірійонні бакцини виробляють з
мікроорганізмів, відповідно бактерій чи вірусів, що зберігають у процесі
виготовлення свою цілісність;

2. хімічні вакцини з продуктів життєдіяльності мікроорганізму
(класичний приклад – анатоксини) чи його інтегральних компонентів, т.зв.
субмікробні чи субвірійонні вакцини;

3. генно-інженерні вакцини, які містять продукти експресії окремих
генів мікроорганізму, напрацьовані в спеціальних клітинних системах;

4. химерні, чи векторні вакцини, у яких ген, що контролює синтез
протективного білка, вбудований у нешкідливий мікроорганізм у
розрахунку на те, що синтез цього білка буде відбуватися в організмі
щепленого і, нарешті,

5. синтетичні вакцини, де в якості іммуногена використовується хімічний
аналог протективного білка, отриманого методом прямого хімічного
синтезу.

У свою чергу серед цельномікробні (цельновірійонні) вакцин можуть
виготовляти з убитих чи живих мікроскладових. У перших можливість прояву
патогенних властивостей мікроорганізму надійно усувається за рахунок
хімічної, термальної чи іншої обробки мікробної (вірусної) суспензії,
іншими словами, умертвіння збудника хвороби при збереженні його
іммунізуючої активності; у других – за рахунок глибоких і стабільних
змін у геномі мікроорганізму, що виключають імовірність повернення до
вірулентного фенотипу, тобто реверсії.

Ефективність живих вакцин визначається в кінцевому рахунку здатністю
аттенуірованого мікроорганізму розмножуватися в організмі щепленого,
відтворюючи іммунологічно активні компоненти безпосередньо в його
тканинах.

При використанні убитих вакцин іммунизуючий ефект залежить від
кількості іммуногену, який вводиться в складі препарату, тому з метою
створення більш повноцінних імуногенних стимулів приходиться прибігати
до концентрації й очищення мікробних кліток чи вірусних часток.

Іммунізуючу здатність иіактивованих і всіх інших нереплікованих вакцин
вдається підвищити шляхом сорбції іммуногену на крупномолекулярних
хімічно інертних полімерах, додавання адъювантів, тобто речовин, що
стимулюють імунні реакції організму, а також висновку іммуногену в
дрібні капсули, які повільно розсмоктуються, сприяючи депонуванню
вакцини в місці введення і пролонгуванню, тим самим, дії імуногенних
стимулів.

Як відомо, основу кожної вакцини складають протективні антигени, що
представляють собою лише невелику частину бактеріальної чи клітки вірусу
й обеспечивающие розвиток специфічної імунної відповіді. Протективні
антигени можуть бути білками, глікопротеідами, ліпополісахаридобілковими
комплексами. Вони можуть бути зв’язані з мікробними клітками (коклюшна
паличка, стрептококи й ін.), секретуватися ними (бактеріальні токсини),
а у вірусів розташовуються переважно в поверхневих шарах суперкапсиду
ві0ріона.

До складу вакцини, крім основного діючого початку, можуть входити й інші
компоненти – сорбент, консервант, наповнювач, стабілізатор і
неспецифічні домішки. До останнього можуть бути віднесені білки
субстрату культивування вірусних вакцин, слідові (слідовою називається
кількість речовини, невизначувана сучасними методиками) кількість
антибіотика і білка сироватки тварин, використовуваних у ряді випадків
при культивуванні клітинних культур.

Консерванти входять до складу вакцин, вироблених в усьому світі. Їх
призначення складається в забезпеченні стерильності препаратів у тих
випадках, коли виникають умови для бактеріальної контамінації (поява
мікротріщин при транспортуванні, збереження розкритого первинного
багатодозового упакування). Вказівка про необхідність наявності
консервантів міститься в рекомендаціях ВІЗ. Що стосується речовин,
використовуваних як стабілізатори і наповнювачі, то у виробництві вакцин
використовуються ті з них, що допущені для введення в організм людини.

Список використаної літератури

Векірчик К.М. Мікробіологія з основами вірусології: Підручник. – К.:
Либідь, 2001. – 312 с.

Ґудзь С.П. та ін. Основи мікробіології. – К., 1991.

Мишустин Е.Н., Емцев В.Т. Микробиология. – М., 1987.

PAGE

PAGE 9

Нашли опечатку? Выделите и нажмите CTRL+Enter

Похожие документы
Обсуждение

Ответить

Курсовые, Дипломы, Рефераты на заказ в кратчайшие сроки
Заказать реферат!
UkrReferat.com. Всі права захищені. 2000-2020