Тема : Математичне забезпечення САПР.

Загальні поняття та вимоги до МЗ.

Способи отримання математичних моделей.

Постановка задач оптимізації.

Класифікація і характеристика методів оптимізації.

1.

МЗ включає в себе мат. методи, мат. моделі та алгоритми.

Мат. моделі описують взаємозв’язки параметрів об’єкту, а також
дозволяють оцінити наслідки проектних рішень. Важливою перевагою мат.
моделей є можливість одержати інформацію про об’єкт проектування без
проведення натуральних експериментів.

Основні вимоги до мат. моделей:

універсальність;

точність;

адекватність;

економічність.

Універсальність – мат. моделі – означає можливість її застосування для
аналізу певної групи об’єктів.

Точність м.м. – оцінюється мірою співпадання даних, отриманих по м.м. із
реальними даними.

Адекватність м.м. – здатність відображати властивості об’єкту із
похибкою не вище заданої.

Економічність м.м. – характеризується затратами обчислюваних ресурсів на
її реалізацію.

До обч. ресурсів відносять:

час, який необхідний для реалізації мат. моделей.

об’єм машинної пам’яті.

2. Способи отримання мат.моделей.

Існує три отримання м.м.:

Аналітичний;

Експериментально-аналітичний;

Експериментальний.

Суть аналітичного способу отримання м.м. полягає в застосуванні
класичних законів фізики, хімії та ін.наук.

Суть експериментально-аналітичного методу полягає в обчисленні значень
коефіцієнтів для насамперед відомої моделі.

Для отримання мат. моделей експериментальний метод – 9.3. док. необхідно
реалізувати сукупність експериментальних досліджень, серію дослідів
тощо.

Експериментальні дослідження можуть проводитись за класичним способом та
за допомогою математичного планування експериментів.

Недолік класичного методу – це велика кількість дослідів.

Перевага – вища точність опису.

Мат. програмування експерименту дозволяє побудувати мат. залежності
(м.м.) при значно меншій кількості дослідів.

Найширше для опису процесів та об’єктів д/о застосовуються:
повнофакторні плани (ПФП); плани Бокса (В); а також центральні
композиційні уніфориронтотабельні плани (УКУРП).

Класичн. 52 = 25

ПФП N = 2R = 4

X1 X2 Y

X1min X2min Y1

X1max X2min Y2

X1min X2min Y3

X1min X2min Y4

Y = b0+b1x1+b2x2+b12 * x1x2

Перевага – менша кількість дослідів.

Недолік – точність опису гірша.

Якщо модель 1-го порядку неадекватна, то переход. до планів Бокса, та до
УКУРП.

Реалізація цих планів дозволяє отримати мат. моделей у вигляді рівняння
регресії 2-го порядку.

де:

y – значення вихідного параметра (критерія оптимізації);

b0 – значення вільного члена;

bi – значення лінійних коефіцієнтів;

bii – значення квадратних коефіцієнтів;

bij – значення коефіцієнтів парної взаємодії;

xi – значення вхідних факторів.

3. Загальна постановка задач оптимізації.

2 види м.м.

описового характеру;

оптимізаційні.

Після побудови м.м. проектувальник здійснює її оптимізації:

вибір оптичного типу об’єкта;

вибір оптимальної конструктивної схеми;

оптимізацію параметрів об’єкту;

пошук оптимального управління об’єктом;

оптимізацію допусків та параметрів.

Після побудови м.м. формуємо функцію мети (критерії оптимізації).

Функція мети – кількісний показник, який дозволяє оцінити ефективність
прийнятих рішень.

Критерії (показники) оптимізації поділяються на 3 групи:

технічні;

техніко-економічні;

екологічні.

1 – надійність, енерго- та металомісткість, тривалість служби.

2 – продуктивність, собівартість, рентабельність і ін.

3 – оцінюють вплив проектованого об’єкту на довкілля.

Після побудови функції мети формують обмеження на параметри
(продуктивний облад.; габаритні розміри меблевих виробів, к.к.д.,
швидкодію та ін.).

Після цього приступаємо до вибору методу оптимізації.

Для оптимізації використовуються:

Класичні або аналітичні методи (диференційне числення, варіаційне
числення, метод многочленів Лагранжа).

Методи мат. програмування:

а) лінійне;

б) нелінійне;

в) динамічне;

г) стохастичне програмування.

(стохастична – випадковість в часі).

Лінійне програмування – використовується в тих випадках, коли функція
мети та обмеження мають лінійний характер (Simplex — метод).

Нелінійне програмування – застосовується в тих випадках, коли функція
мети або обмеження є нелінійним (методи сканування, градієнтні).

Стохастичне програмування — …, коли маємо справу із випадковими
факторами.

Динамічне програмування – використовується для оптимізації дискретних
об’єктів, які можна природно або умовно поділити на окремі стадії в часі
або просторі.

Похожие записи