Спосіб введення жорстких консолей
Приклад. Побудувати епюри згинальних моментів для статично невизначеної рами (мал.6.14,а), використовуючи спосіб введення жорстких консолей.
Цей спосіб використовується для ортогоналізації епюр (тобто для одержання нульових переміщень — коефіцієнтів канонічних рівнянь) у межах кожного замкнутого або відкритого з затисненими кінцями симетричного контуру. Для ортогоналізації епюр за допомогою жорстких консолей відповідні невідомі переносяться в деяку точку, названу пружним центром. Положення цієї точки визначається як положення центра тяжіння умовного тонкостінного перетину з товщиною
Задана рама має ступінь статичної невизначеності:
Для вибору основної системи (мал.6.14,б) використовуємо ту обставину, що лівий (П-подібний) контур рами симетричний. Розріжемо його по осі симетрії, що буде еквівалентно видаленню трьох зв’язків і появі трьох невідомих реакцій. Четвертий зв’язок усунемо шляхом видалення шарнірно-рухомої опори. Введення в місці розрізу жорстких консолей із прикладеними на їхніх кінцях реакціями Х1, Х2, Х3 разом з реакцією Х4 і зовнішніми навантаженнями приводить до еквівалентної системи (мал.6.14,в).
Визначимо положення пружного центру, тобто фактично довжину жорстких консолей (мал.6.14,г), обчислюючи координати центра тяжіння умовного тонкостінного П-подібного перетину:
Одиничні епюри згинальних моментів показані на мал.6.14,д,е,ж,з, а епюра моментів від зовнішніх навантажень – на мал.6.14,і.
Враховуючи, що результат перемноження симетричної епюри на кососиметричну дорівнює нулеві, систему канонічних рівнянь методу сил розглянутої рами запишемо в вигляді
Обчислимо коефіцієнти рівнянь, використовуючи, як звичайно, спосіб Верещагіна:
а | б | в |
г | д | е |
ж | з | і |
Рис.6.14. Спосіб введення жорстких консолей (до прикладу 6.6)
Для перевірки правильності обчислення коефіцієнтів і вільних членів канонічних рівнянь побудуємо сумарну одиничну епюру згинальних моментів (мал.6.15,а) і визначимо коефіцієнти і .
а | б |
Рис.6.15. Сумарна одинична і кінцева епюри (до прикладу 6.6)
Перевірка:
Отже, коефіцієнти і вільні члени канонічних рівнянь обчислені правильно. Розв’язок системи канонічних рівнянь дає наступні значення невідомих:
Остаточна епюра моментів для заданої рами показана на мал.6.15,б.
Можна самостійно переконатися в правильності побудови епюри, перемноживши її із сумарною одиничною епюрю (результат, як відомо, повинний дорівнювати нулеві).
Нашли опечатку? Выделите и нажмите CTRL+Enter