.

Другий закон термодинаміки та його значення (реферат)

Язык: украинский
Формат: реферат
Тип документа: Word Doc
449 5942
Скачать документ

Другий закон термодинаміки та його значення

Зміст

I – Вступ 3-4ст.

II – Основна частина 5-26ст.

Розділ 1.Виникнення термодинаміки(закони термодинаміки)5-12ст.

Розділ 2.Теплові двигуни і холодильники 13-15 ст.

Розділ 3.Ефективність теплових двигунів і другий закон термодинаміки

16-18 ст.

Розділ 4.Двигун Карно 19-20ст.

Розділ 5.Нездійсненна мрія (“Вічний двигун”)
21-26ст.

IІІ – Висновки 27-28ст.

ІV – Список використаних джерел
29ст.

Вступ

Відповідно до першого початку термодинаміки, енергія
зберігається. Ми можемо уявити собі багато процесів, у яких енергія
зберігається, але в природі такі процеси не спостерігаються. Наприклад,
коли гаряче тіло приводиться в контакт із холодним, теплота завжди
переходить від гарячого тіла до холодного, а не навпаки. Якби теплота
все-таки переходила від холодного тіла до гарячого, то енергія й у цьому
випадку зберігалася б, але такий процес у дійсності не має місця. Як
другий приклад розглянемо, що відбувається після кидання каменю, що
падає на поверхню Землі. В міру падіння каменя його початкова
потенціальна енергія переходить у кінетичну. Коли ж камінь стикається з
Землею, його кінетична енергія перетворюється у внутрішню енергію каменя
і землі (це означає, що молекули цих тіл починають рухатися швидше, а
їхня температура повільно збільшиться). Однак чи приходилося вам
коли-небудь, спостерігати зворотне явище, у процесі якого спочиваючий на
поверхні Землі камінь раптом злетів у повітря завдяки тому, що теплова
енергія його (і навколишніх) молекул перетворилося в кінетичну енергію
руху каменю як цілого? У цьому процесі енергія зберігалася б, однак у
дійсності такого ніколи не відбувається.

Існує багато прикладів і інших процесів, що можуть відбуватися в
природі, тоді як зворотні їм ніколи не відбуваються. Наведемо ще два
приклади такого роду. Якщо ви насипаєте в кухоль сіль, а потім покриєте
його шаром перцю і струснете кухоль, то, напевно, одержите добре
перемішану суміш. Однак скільки б ви не трясли кухоль ще, дуже
малоймовірно, щоб ця суміш знову розділилася на два шари – окремо сіль і
перець. Кавова чашка чи склянка розіб’ються, якщо вони упадуть на
підлогу, однак зворотнього процесу не спостерігається.

Якби у всіх вищенаведених прикладах зворотні процеси
реалізувалися, це не привело б до порушення першого початку
термодинаміки. Для того щоб пояснити відсутність оборотності процесів,
вчені в другій половині минулого століття прийшли до формулювання нового
закону, відомого за назвою другий початок термодинаміки. Відповідно до
цього закону, можна судити про те, які процеси можливі в природі, а які
неможливі. Другий початок термодинаміки можна сформулювати багатьма
способами, причому усі вони еквівалентні один одному. Одне з
формулювань, що належить Р.Ю.Э. Клаузіусу (1822-1888), говорить, що
теплота в природних умовах переходить від гарячого тіла до холодного, у
той час, як від холодного тіла до гарячого теплота сама по собі не
переходить. Оскільки це твердження відноситься до процесу визначеного
типу, не цілком очевидно, яким чином застосувати його до інших процесів.
Потрібно більш загальне формулювання, у якому явно будуть враховані й
інші можливі процеси..

Історично більш загальне формулювання другого початку термодинаміки
вироблялося в основному в ході вивчення теплових двигунів (чи, як їх
називали раніше – теплових машин). Тепловий двигун – це будь-який
пристрій, що перетворить теплову енергію в механічну роботу. Нижче ми
перейдемо до вивчення теплових двигунів, що становить інтерес із
практичної точки зору і демонструє їхню важливість для загального
формулювання другого початку термодинаміки.

Мета цієї роботи – вивчення законів термодинаміки, що дає змогу пояснити
хибність уявлення про “вічний двигун”.

В роботі досліджується виникнення термодинаміки як необхідність
розробки теоретичних основ теплових машин та значення другого закону
термодинаміки, який пояснює неможливість перетворення теплової енергії в
механічну.

Розділ 1

Виникнення термодинаміки

Теплові явища відрізняються від механічних і електромагнітних тим, що
закони теплових явищ необоротні (тобто теплові процеси самі йдуть лише в
одному напрямку) і що теплові процеси здійснюються лише в макроскопічних
масштабах, а тому використовувані для опису теплових процесів поняття і
розміри (температура, кількість теплоти і т.д.) також мають тільки
макроскопічний зміст (про температуру, наприклад, можна говорити
стосовно до макроскопічного тіла, але не до молекули або атому).
Водночас знання будови речовини необхідно для розуміння законів теплових
явищ.

Тіло, аналізоване з термодинамічної позиції, є нерухомим, що не володіє
механічною енергією. Але таке тіло має внутрішню енергію, що складається
з енергій електронів, що рухаються, і т.д. Ця внутрішня енергія може
збільшуватися або зменшуватися. Передача енергії може здійснюватися
шляхом передачі від одного тіла до іншого під час виконання над ними
роботи і шляхом теплообміну. В другому випадку внутрішня енергія
переходить від більш нагрітого тіла до менше нагрітого без виконання
роботи. Передану енергію називають кількістю теплоти, а передачу енергії
– теплопередачею. У загальному випадку обидва процеси можуть
здійснюватися одночасно, коли тіло втрачаючи внутрішню енергію може
здійснювати роботу і передавати теплоту іншому тілу. До розуміння цього
вчені прийшли не відразу. У XVIII і першій половині XIX ст. було
характерно розуміти теплоту як невагому рідину (речовину).

Уявлення про теплоту як форми руху дрібних часток матерії з’явилося ще в
XVII столітті. Цих поглядів притримувалися Бекон, Декарт, Ньютон, Гук,
Ломоносов. Проте й у XIX столітті концепція теплороду розглядалася
багатьма вченими. Наприкінці XVIII століття Б.Томпсон (граф Румфорд)
виявив виділення великої кількості тепла під час висвердлюванні каналу в
гарматному стовбурі, що вважав доказом того, що теплота є формою
прямування. Одержання теплоти за допомогою тертя підтвердили досліди
Г.Деві. Б.Томпсон показав, що з обмеженої кількості матерії може бути
отримана необмежена кількість теплоти.

Виникнення власне термодинаміки починається з роботи С.Карно (сам термін
“термодинаміка” введений Б.Томпсоном). Досліджуючи практичну задачу
одержання прямування з тепла стосовно до парових машин, він зрозумів, що
принцип одержання прямування з тепла необхідно розглядати не тільки
стосовно парових машин, але до будь-яких уявних теплових машин. Так був
сформульований загальний метод розв’язку задачі – термодинамічний, що
заклав основу термодинаміки. Визначаючи коефіцієнт корисної дії теплових
машин, Карно увів свій знаменитий цикл, що складається з двох
ізотермічних (які відбуваються при постійній температурі) і двох
адіабатичних (без припливу і віддачі тепла) процесів. ККД циклу Карно не
залежить від властивостей робочого тіла (пари, газу і т.д.) і
визначається температурами тепловіддатчика і теплоприймача. ККД
будь-якої теплової машини не може бути при тих же температурах
тепловіддатчика і теплоприймача вище ККД циклу Карно.

Карно першим розкрив зв’язок теплоти з роботою. Але він виходив із
концепції теплороду, що визнавала теплість незмінної по кількості
субстанцією. Водночас Карно вже зрозумів, що робота парової машини
визначається загальним законом переходу тепла від більш високих до більш
низьких температур, тобто що не може бути безмежного відтворення
рушійної сили без витрат теплороду. Таким чином, робота рекомендувалася
як результат перепаду теплороду з вищого рівня на нижчі. Інакше кажучи,
теплота може створювати роботу лише при наявності різниці температур. За
своїм змістом це і складає основу другого початку термодинаміки. ККД
теплової машини виявився залежним не від робочої речовини, а від
температури тепловіддатчика і теплоприймача. Все це дозволило Карно
прийти до визнання принципу неможливості створення вічного двигуна
першого роду (тобто постійно працюючої машини, що, будучи якось
запущеною, виконувала б роботу без притоку енергії ззовні).

Усвідомлюючи хибність теорії теплороду, Карно зрештою відмовляється від
визнання теплоти незмінної по кількості субстанцією і дає значення
механічного еквівалента теплоти. Але публікація цього висновку була
здійснена вже після винайдення закону збереження енергії, тому даний
висновок не мав того значення, яке б мав. будучи опублікованим раніше.
Але так чи інакше Карно заклав основи термодинаміки як поділу фізики, що
вивчає найбільше загальні властивості макроскопічних систем, що
знаходяться в стані термодинамічної рівноваги, і процеси переходу між
цими станами. Термодинаміка стала розвиватися на основі фундаментальних
принципів або початків, що є узагальненням результатів численних
спостережень і експериментів.

б) Перший початок термодинаміки (закон збереження енергії в застосуванні
до термодинамічних процесів) говорить про те, що надання термодинамічній
системі (наприклад, пари в тепловій машині) визначеної кількості теплоти
в загальному випадку відбувається під час збільшенні внутрішньої енергії
системи і вона здійснює роботу проти зовнішніх сил. Вище відзначалося,
що першим, хто поставив теплоту у зв’язок із роботою, був Карно, але
його робота в силу спізнілої публікації не зробила вирішального впливу
на формування першого початку термодинаміки. Ідея про те, що теплота –
не субстанція, а сила (енергія), однієї з форм якої і є теплота, причому
ця сила, у залежності від умов, виступає у виді руху, електрики, світла,
магнетизму, теплота, що можуть перетворюватися один в одного, існувала в
розумах дослідників. Для перетворення цієї ідеї в ясне і точне поняття,
необхідно було визначити загальну міру цієї сили. це зробили, незалежно
один від одного, Р.Майер, Д.Джоуль і Г.Гельмгольц.

Р.Майер першим сформулював закон еквівалентності механічної роботи і
теплоти і розрахував механічний еквівалент теплоти (1842 р.). Д.Джоуль
експериментально підтвердив припущення про те, що теплота є формою
енергії і визначив міру перетворення механічної роботи в теплоту.
М.Гельмгольц у 1847 р. математично обгрунтував закон збереження енергії,
показавши його загальний характер. Підхід усіх трьох авторів закону
збереження енергії був різноманітним. Майер відштовхувався більше від
загальних положень, пов’язаних з аналогією між “живою силою” (енергією),
що одержували тіла при своєму падінні відповідно до закону всесвітнього
тяжіння, і теплотою, що віддавали стиснуті гази.

Джоуль взяв за основу експерименти по виявленню можливості використання
електричного двигуна як практичного джерела енергії (ця обставина і
змушувала його задуматися над питанням про кількісну еквівалентність
роботи і теплоти).

М.Гельмгольц прийшов до відкриття закону збереження енергії, намагаючись
застосувати концепцію руху тіл Ньютона , що знаходяться під впливом
взаємного тяжіння. Його висновок про те, що сума сили і напруги (тобто
кінетичної і потенціальної енергії) залишається постійною, є
формулюванням закону збереження енергії в його найбільш загальній формі.
Цей закон – велике відкриття XIX сторіччя. Механічна робота, електрика і
теплота – різноманітні форми енергії. Д.Бернал так охарактеризував його
значення: “Він об’єднав багато наук і знаходився у винятковій гармонії з
тенденціями часу. Енергія стала універсальною валютою фізики – так би
мовити, золотим стандартом змін, що відбувалися у Всесвіті. Те, що було
встановлено, являло собою твердий валютний курс для обміну між валютами
різноманітних видів енергії: між калоріями теплоти кілограм-метрами
роботи і кіловат-годинами електрики. Вся людська діяльність у цілому –
промисловість, транспорт, освітлення і, у кінцевому рахунку, харчування
і саме життя – розглядалося з погляду залежності від цього одного
загального терміну – енергія”

в) Другий початок термодинаміки – закон зростання ентропії: у замкнутій
(тобто ізольованій в тепловому і механічному відношенні) системі
ентропія або залишається незмінною (якщо в системі протікають зворотні,
зрівноважені процеси), або зростає (при нерівних процесах) і в стані
рівноваги досягає максимуму. Існують і інші еквівалентні формулювання
другого початку термодинаміки, що належать різним ученим: неможливий
перехід теплоти від тіла більш холодного до тіла, більш нагрітого, без
яких-небудь інших змін у системі або навколишньому середовищі
(Р.Клаузиус); неможливо створити періодично діючу, тобто здійснюючу
якийсь термодинамічний цикл, машину, уся робота якої зводилася б до
підняття деякого вантажу і відповідному охолодженню теплового
резервуара (В.Томсон, М.Планк); неможливо побудувати вічний двигун
другого роду, тобто теплову машину, що результатом виконання колового
процесу (циклу) цілком перетворить теплоту, одержувану від якогось
одного “невичерпного” джерела (океану, атмосфери і т.д.) у роботу
(В.Оствальд).

В.Томсон (лорд Кельвін) сформулював принцип неможливості створення
вічного двигуна другого роду, у 1852 році прийшов до формування
концепції “теплової смерті” Всесвіту. Її суть розкривається в таких
положеннях. По-перше, у Всесвіті існує тенденція до марнування
механічної енергії По-друге відновлення механічної енергії в старій
кількості не може бути здійснено. По-третє, у майбутньому Земля
опинеться в негожому для життя людини стані. Через 20 років Клаузіус
приходить до того ж висновку, сформулювавши другий початок
термодинаміки: ентропія Всесвіту прямує до максимуму. (Під ентропією він
розумів розмір, що подає собою суму всіх перетворень, що повинні були
мати місце, щоб привести систему в її теперішній стан.)

Суть у тому, що в замкнутій системі ентропія може тільки зростати або
залишатися постійною. Інакше кажучи, у всякій ізольованій системі
теплові процеси однонаправлені, що і приводить до збільшення ентропії.
Варто ентропії досягти максимуму, як теплові процеси в такій системі
припиняються, що означає прийняття всіма тілами системи однакової
температури і перетворення усіх форм енергії в теплову. Виникнення стану
термодинамічної рівноваги приводить до припинення всіх макропроцесів, що
означає стан “теплової смерті”.

Для поширення другого початку термодинаміки на інші необоротні процеси
було введене поняття ентропії як міри безладдя. Для ізольованих систем
другий початок термодинаміки можна свормулювати так: ентропія системи
ніколи не зменшується. Система, що знаходиться в стані рівноваги, має
максимальну ентропію.

Поняття ентропії пов’язують і з поняттям інформації. Система, що
знаходиться в упорядкованому стані, містить багато інформації, а
неупорядкована система містить мало інформації. Так, наприклад, текст
книги містить багато інформації, а випадковий набір букв не несе
інформації. Інформацію тому й ототожнюють із негативною ентропією. При
рості ентропії інформація зменшується.

Серед багатьох висунутих проти цього висновку заперечень найбільше
відомим було заперечення Максвела. Він виходив із того, що другий
початок має обмежену галузь використання. Максвел вважав другий початок
термодинаміки справедливим, поки ми маємо справу з тілами, що володіють
великою масою, коли немає можливості розрізняти в цих масах окремі
молекули і працювати з ними. Він запропонував виконати уявний
експеримент – уявити собі істоту, спроможню стежити за кожною молекулою
у всіх її прямуваннях, і розділити якиусь посудину на дві частини
перегородкою з маленьким отвором у ній. Ця істота (названа “демоном
Максвела”), спроможна розрізняти окремі молекули, буде то відчиняти, то
закривати отвір таким чином, щоб молекули, що швидко рухаються, могли
переходити в іншу половину. У цьому випадку “демон Максвелла” без
витрати роботи зміг би підвищити температуру в першій половині судини і
понизити в другий всупереч другому початку термодинаміки.

Даний процес асиметричний в часі – без зовнішнього втручання він не може
стати оборотним. Тобто безтямно очікувати в цьому випадку, що гази
повернуться в початкове положення. Можна сказати, що в природі порядок
поступится місцем безладдю. Однак можна привести приклади, що суперечать
даному принципу зростання ентропії. Утворення із рідини кристалів є
упорядкування цієї рідини і т.д. Проте повна ентропія системи разом із
навколишнім середовищем зростає, тому що біологічні процеси здійснюються
за рахунок ентропії сонячного випромінювання і т.д.

Л.Больцман, що почав спробу пояснити, чому порядок поступається місцем
безладдю, сформулював H-теорему, що є результатом з’єднання двох
підходів до наближення газу до стану рівноваги – макроскопічного
(законів ньютонівської механіки, що описують прямування молекул) і
мікроскопічного (вихідного з уявлення газу що прагне до безладного
перерозподілу). З даної теореми слідує висновок, що ентропія може тільки
зростати – така поводінка термодинамічних систем у часу.

Проте з Н-теоремою Больцмана виявився пов’язаним парадокс, навколо якого
виникнула дискусія. Суть полягає в тому, що за допомогою однієї
заснованої на механіці Ньютона молекулярної теорії довести постійне
зростання ентропії замкнутої системи не можна, оскільки Ньютонівська
механіка симетрична в часі – будь-яке прямування атомів, засноване на
законах ньютонівської механіки може бути подане як таке, що
відбувається в оберненому напрямку. Так як асиметрію не можна вивести із
симетрії, то теорема Больцмана (яка на основі лише однієї механіки
Ньютона підтверджує, що зростання ентропії асиметричне в часі) не може
бути вірною – для доказу необхідно було до законів механіки додати й
асиметрію. Тому чисто механічна інтепретація закону зростання ентропії
була неспроможної. На це першим звернули увагу Й.Лошмідт і Э.Цермело.

Роблячи висновки з Н-теореми Больцман крім механіки Ньютона спирався на
припущення про молекулярний хаос, хоча це було, не завжди вірним. За
теорією ймовірності, можливість того, що молекули газу в згаданій раніше
посудині будуть рухатися не хаотично, а впорядковано в одну його
половину,є малоймовірним. Тому можна сказати, що в принципі можуть бути
випадки, коли ентропія зменшується, а хаотичне прямування молекул буде
упорядковуватися. Таким чином, Н-теорема Больцмана описує механізм
переходу газу зі стану з низькою ентропією в зрівноважний, але не
пояснює, чому це відбувається саме так, наприклад із минулого в
майбутнє. Якщо це дійсно так, то больцманівська модель позбавляється
тимчасової асиметрії.

Тимчасова асиметрія – це реальний факт. Впорядкованість реальних систем
може виникати за рахунок зовнішніх впливів, а не за рахунок внутрішніх
безладних флуктуацій (будинок, наприклад, споруджується будівельниками,
а не в результаті внутрішніх хаотичних прямувань). У реальності всі
системи формуються під впливом навколишнього середовища. Для розрізнення
реальних систем, що, відокремлюючись від навколишнього Всесвіту,
приходять у стан з низькою ентропією, і больцманівських постійно
ізольованих від навколишнього середовища систем, Г.Рейхенбах назвав
першими структурами.Дана структура поводиться асиметрично в часу через
схований вплив ззовні. При цьому причина асиметрії – не в самій системі,
а у впливі. У реальному світі больцманівських систем немає.

Асиметричні в часі процеси існують також за межами термодинаміки.
Прикладом таких процесів можуть бути хвилі (у тому числі радіохвилі).
Так, радіохвилі поширюються від передавача в навколишній простір, але не
навпаки. Аналогічно існує справа з поширенням хвиль від кинутого в
ставок каменю. Хвилі, що утворилися, поширюються у різні сторони,і
називаються запізнілими. В принципі можливі хвилі, що випереджають їх
появу, можуть виникати тоді, коли обурення спочатку проходять через
віддалену точку, а потім сходяться в місці поширення джерела хвилі.
Ізольований ставок є симетрична в часі системою, як і больцманівська
посудина з газом. Кинутий у нього камінь створює розгалуджену структуру.
Радіохвиля ж зворотно не повернеться, тому що поширюється в безмежному
просторі. Тут ми маємо справу з необмеженою диссипацією (розсіюванням)
хвиль і частинок, що являє собою ще один тип необоротної тимчасової
асиметрії. Виходить, утворення структур, що розгалуджуються, і
необоротна асиметрія безкінечного хвилястого прямування роблять
необхідним врахувати великомасштабні властивості Всесвіту.

г) Третій початок термодинаміки (теорема Нернста) : ентропія фізичної
системи під час наближення температури до абсолютного нуля не
залежить від параметрів системи і залишається незмінною. Інші
формулювання теореми: при наближенні температури до абсолютного нуля всі
зміни стану системи не змінюють її ентропії; за допомогою кінцевої
послідовності термодинамічних процесів не можна досягти температури,що
дорівнює абсолютному нулю. М.Планк доповнив теорему гіпотезою,
відповідно до якої ентропія всіх тіл при абсолютному нулі температури
дорівнює нулю. З теореми випливають важливі наслідки про властивості
речовин при температурах, близьких до абсолютного нуля: набувають
нульового значення питомі теплоємності при сталому об’ємі і тиску. Крім
того, із теореми випливає недосяжність абсолютного нуля температури при
кінцевому стані термодинамічних процесів.

Якщо перший початок термодинаміки підтверджує, що теплота є форма
енергії, що вимірюється механічною мірою, і неможливість вічного двигуна
першого роду, то другий початок термодинаміки заперечує створення
вічного двигуна другого роду. Перший початок увів функцію стану –
енергію, другий початок увів функцію стану – ентропію. Якщо енергія
закритої системи залишається незмінною, то ентропія цієї системи при
кожній зміні збільшується – зменшення ентропії суперечить законам
природи. Співіснування таких незалежних один від одного функцій стану,
як енергія й ентропія,що дає можливість робити висновок про теплову
поведінку тіл на основі математичного аналізу. Оскільки обидві функції
обчислювалися лише стосовно довільно обраного початкового стану то
повністю визначити енергію й ентропію не є можливість зробити. Третій
початок термодинаміки дав можливість усунути цю проблему. Важливе
значення для розвитку термодинаміки мали встановлені Ж.Л.Гей-Люсаком
закони – закон теплового розширення і закон об’ємних відношень.
Б.Клапейрон установив залежність між фізичними величинами, що визначають
стан ідеального газу (тиском, об’ємом і температурою),яку узагальнив
Д.И.Менделєєвим.

Таким чином, концепції класичної термодинаміки описують стани теплової
рівноваги і рівноважні (які протікають нескінченно повільно, тому час в
основні рівняння не входять) процеси. Термодинаміка нерівновагових
процесів виникає пізніше – у 30-х рр. ХХ сторіччя. У ній стан системи
визначається локальні термодинамічні параметри, що розглядаються як
функції координат і часу.

Розділ 2

Теплові двигуни і холодильники

Неважко одержати теплову енергію за рахунок здійснення роботи,
наприклад досить сильно потерти одну долоню об іншу, цієї ж мети можна
досягти в будь-якому процесі за участю тертя. Однак одержати механічну
роботу за рахунок теплової енергії значно складнішне, і практично
корисний пристрій для цієї мети було винайдено лише близько 1700р. на
основі парової машини.

Мал.1 Мал.2

Основна ідея, що лежить в основі будь-якого теплового двигуна,
полягає в тому, що механічна енергія може бути отримана за рахунок
теплової, тільки якщо дати можливість теплоті переходити з області з
високою температурою в область з низькою температурою, причому в процесі
цього переходу частина теплоти може бути перетворена в механічну роботу.
Висока Тн і низька TL температури називаються робочими температурами
двигуна, і надалі для спрощення ми будемо вважати, що ці температури
забезпечуються двома термостатами, що знаходяться при постійних
температурах Тн і TL. Нас будуть цікавити тільки теплові двигуни, що
роблять періодичні робочі цикли (тобто вся система періодично
повертається у вихідний стан) і в такий спосіб можуть діяти постійно.

Сучасні парові двигуни підрозділяються на два основних типи. У двигунах
так званого оборотного типу нагріта пара проходить через впускний клапан
і потім розширюється в просторі під поршнем, змушуючи його рухатися;
після того як поршень повертається у своє вихідне положення, він
витісняє гази через випускний клапан. У паровій турбіні відбувається,
власне кажучи, те ж саме; розходження лише в тому, що поршень який
рухається обертально-поступально замінюється турбіною, яка обертається і
нагадує колесо греблі з численними лопастями. За допомогою парових
турбін1* виробляється велика частина одержуваної в даний час
електроенергії. Речовина, що нагрівається і охолоджується (у даному
випадку пара), називається робочим тілом. У паровому двигуні висока
температура досягається за рахунок спалювання вугілля, чи нафти, іншого
палива; при цьому нагрівається пара. У двигуні внутрішнього згоряння
висока температура досягається за рахунок згоряння робочої суміші
(бензину з повітрям) всередині циліндру двигуна; запалення суміші
відбувається за допомогою іскри.

З’ясуємо тепер, чому для практичної роботи двигуна необхідна різниця
температур; розглянемо це на прикладі парового двигуна. Нехай у паровому
двигуні оборотнього типу, не було б ні конденсатора, ні насоса, щоб пара
мала однакову температуру у всій системі. Це означало б, що тиск пари
при його випуску був би таким же, як і під час впуску. Тоді робота, яку
виконала пара над поршнем при своєму розширенні після впуску,
дорівнювала б роботі, що зробив поршень над парою при його випуску; у
кінцевому рахунку не було б зроблено ніякої результуючої роботи. У
реальному двигуні газ, що випускається, охолоджується до більш низької
температури і конденсується, так що тиск при випуску менший, ніж тиск
при впуску. Тоді робота, що повинен виконати поршень для виштовхування
пари з циліндра на стадії випуску, буде менше, ніж робота, яку виконає
пара над поршнем на стадії впуску. У такий спосіб може бути отримана
деяка результуюча робота, але для цього, як тепер зрозуміло, необхідна
різниця температур. Аналогічно, якби пара в паровій турбіні не
охолоджувалася, то й тиск по обох сторонах кожної лопатки був би
однаковим і турбіна не стала б обертатися. Охолодження пари з боку
лопасті, поверненої до випускного клапана , приводить до того, що тиск
пари з боку лопасті, поверненої до впускного клапана, стає більше й у
результаті турбіна обертається.

Принцип дії холодильника чи іншого теплового насоса (наприклад,
використовується для створення теплового потоку ззовні усередину будинку
чи навпаки; в останньому випадку пристрій називається повітряним
конденціонером) складається в обертанні робочих стадій теплового
двигуна. Використовуючи роботу W, можна відібрати деяку кількість
теплоти з області із низькою температурою TL (наприклад, із внутрішнього
обсягу холодильника) і потім віддати більшу кількість теплоти в область
із високою температурою Тн (наприклад, у кімнату).

1} Навіть на атомних електростанціях (АЕС) застосовуються парові
турбіни; ядерне паливо (уран) необхідно лише для нагрівання пари

Ви можете без праці відчути цю теплоту, підносячи руку до задньої стінки
холодильника. Робота W відбувається звичайно мотором компресора, що
стискає робоче тіло.

Розділ 3

Ефективність теплових двигунів і другий закон термодинаміки

При вивченні роботи теплових двигунів у цьому і наступних розділах ми
будемо цікавитися насамперед величинами потоків теплоти. Тому, щоб не
задумуватися всякий раз про знак потоку теплоти , що визначає його
напрямок (у систему чи з неї), ми будемо тут використовувати для теплоти
лише абсолютні значення (|Q|) і необхідний за змістом знак плюс чи
мінус.Ефективність будь-якого теплового двигуна визначається його
коефіцієнтом корисної дії (ККД). Будемо позначати ККД буквою е і
визначати як відношення роботи двигуна W до кількості підведеної теплоти
|QH| при високій температурі.

ККД двигуна буде більшим тоді, коли буде менша |QL|. Однак досвід
роботи з дуже широким класом двигунів показав, що зменшити величину |QL|
до нуля неможливо. Якби це було здійсненно, то ми одержали би двигун з
ККД, рівним 100%. Такий ідеальний двигун, який безперервно виконує
робочі цикли, неможливий. Саме це лежить в основі ішого формулювання
другого початку термодинаміки:

Неможливий періодичний процес, єдиним результатом якого було би
перетворення теплоти Q при незмінній температурі цілком у роботу W (так
що W= Q).

Це твердження відоме як формулювання другого початку термодинаміки
Кельвіна – Планка. Якби заборона, що міститься в ньому, не виконувалася
і можна було б побудувати ідеальний двигун, то могли б відбуватися дивні
речі. Так, наприклад, якщо б двигуну на кораблі не потрібний був
низькотемпературний резервуар (термостат), у який він міг би скидати
частину теплоти після стадії випуску, то корабель міг би перепливти
океан, користуючись тільки величезними запасами внутрішньої енергії
океанських вод. Власне кажучи, відпала б взагалі проблема палива!

Однак усі спроби побудувати ідеальний двигун виявилися марними, і це
вважається взагалі неможливим. Аналогічно неможливим виявилося
побудувати оборотну систему – ідеальний холодильник, а саме пристрій, за
допомогою якого теплоту можна було б переносити з низькотемпературної
області у високотемпературну, причому для цього не було б потреби
здійснювати будь-яку роботу . Це твердження можна сформулювати так:

Неможливо здійснити періодичний процес, єдиним результатом якого був би
відбір теплоти в однієї системи при даній температурі і передача в такій
же кількості теплоти іншій системі при більш високій температурі.

Це формулювання другого початку термодинаміки Клаузіуса. Воно узагальнює
менш строге твердження про те, що теплота мимоволіно не буде переходити
від холодного тіла до гарячого. Щоб досягти цієї мети, необхідно
виконати роботу. Твердження Клаузіуса можна також сформулювати так: не
можна створити ідеальний холодильник.

Покажемо тепер, що два різні формулювання другого початку
термодинаміки-Клаузіуса і Кельвіна-Планка-еквівалентні один одному. Для
цього доведемо, що якщо невірне одне з них, то невірне й інше. Таким
чином, обидва формулювання повинні бути або невірними, або вірними що і
доводить їхню еквівалентність.

Припустимо, що формулювання Клаузиуса помилкове, тобто ідеальний
холодильник був би можливий. Можна було б відібрати кількість теплоти |
Q | від тіла з низькою температурою і передати її тілу з високою
температурою, не виконуючи роботи. Розглянемо тепер звичайний двигун, що
відбирає кількість теплоти | Q’ | від тіла з високою температурою,
виконує роботу W і випускає кількість теплоти | Q | у резервуар з низкою
температурою.Результуюча дія цих двох пристроїв така, що від тіла з
високою температурою відбирається кількість теплоти | Q’ | — | Q | і
цілком перетвориться в роботу W= | Q’ | — | Q |. Таким чином, ця система
працює як ідеальний двигун, що суперечить формулюванню Кельвін-Планка.

Припустимо тепер, що формулювання Кельвіна-Планка – помилкове, і
формулювання Клаузиуса також. Нехай ідеальний двигун відбирає кількість
теплоти | Q’ | від тіла з високою температурою і потім цілком
перетворить її в корисну роботу W, так що W= |Q| . Потім звичайний
холодильник використовує цю роботу для добору кількості теплоти |Q’| від
тіла з низькою температурою і передачі кількості теплоти |Q”| тілу з
високою температурою. Отже, цей пристрій відбирає від тіла з високою
температурою кількість теплоти | Q | і передає йому кількість теплоти |
Q” |; результуючий приплив теплоти до тіла з високою температурою при
цьому дорівнює | Q” |-| Q |=(| Q’ | + | Q |)-| Q |=| Q’ |. Таким чином,
результуюча дія цього пристрою складається у відборі кількості теплоти
| Q’ | від тіла з низькою температурою передачі такої ж кількості
теплоти | Q’ | тілу з високою температурою, що суперечить другому
початку термодинаміки у формулюванні Клаузіуса.

Ми переконалися в тім, що якщо одне з формулювань другого початку
термодинаміки, а саме Клаузіуса і Кельвіна – Планка, невірне, то невірне
й інше. Отже, якщо вірне одне з них, то повинно бути вірне й інше, так
що обидва формулювання еквівалентні.

Розділ 4

Двигун Карно

Процес перетворення теплоти в механічну енергію розширеноно вивчав на
самому початку дев’ятнадцятого століття французький учений Н. Л. Саді
Карно (1796-1832). Він мав намір визначити способи підвищення ККД
теплових двигунів, однак дослідження незабаром привели його до вивчення
основ самої термодинаміки.

Як допоміжний засіб для своїх досліджень Карно в 1824 р. винайшов (на
папері) ідеалізований тип двигуна, що ми називаємо тепер двигуном Карно.
Важливе значення двигуна Карно полягає не тільки в його можливому
практичному застосуванні, але й у тім, що він дозволяє пояснити принципи
дії теплових двигунів взагалі; не менш важливо і те, що Карно за
допомогою свого двигуна вдалося внести вагомий вклад в обґрунтування і
осмислення другого початку термодинаміки.

В двигуні Карно відбуваються оборотні процеси; тому насамперед необхідно
з’ясувати, що ми маємо на увазі під оборотними і необоротними процесами.
Оборотний процес – це такий процес, що протікає надзвичайно повільно,
так що його можна розглядати як послідовний перехід від одного
зрівноважного стану до іншого і т.д., причому весь цей процес можна
провести в зворотному напрямку без зміни виконаної роботи і переданої
кількості теплоти. Наприклад, газ, що знаходиться в циліндрі з щільно
притиснутим до його стінок рухливим поршнем, (тертя зі стінками
відсутнє), можна зтиснути ізотермічно зворотним шляхом, якщо проводити
стиснення дуже і дуже повільно. Однак не всі навіть дуже повільні
процеси є оборотними. Наприклад, якщо в процесі бере участь тертя (в
описаному вище прикладі це може бути тертя між поршнем і стінками
циліндра), то робота, зроблена під час руху в одному напрямку
(наприклад, від стану А до стану В), не буде дорівнювати(із протилежним
знаком) роботі, виконаної під час руху в зворотному напрямку (від стану
В до стану А). Такий процес не можна було б розглядати як оборотний.
Зрозуміло,що ідеальний оборотний процес у дійсності неможливий, оскільки
для нього потрібно нескінченно великий час; однак оборотні процеси можна
моделювати з високою точністю, і ці процеси мають дуже важливе значення
для теорії. Усі реальні процеси є необоротними і відбуваються з кінцевою
швидкістю. У газі можуть виникати збурення (аж до турбулентності), може
бути присутнім тертя, можуть бути й інші причини необоротності. При
таких умовах жоден процес не може бути чітко оборотним, оскільки втрати
теплоти на тертя вже самі по собі є необоротними, турбулентність стане
іншою і т.д. Для будь-якого виділеного об’єму не буде існувати одного
добре визначеного значення тиску Р і температури Т, оскільки система не
завжди буде знаходитися в стані рівноваги. Таким чином, реальний
необоротний процес не може бути зображений на PV-діаграмі (за винятком
випадків, коли такий процес у деякому наближенні можна розглядати як
ідеальний оборотний процес). Оборотний процес завжди можна зобразити на
РV-діаграмі, причому , коли він протікає в зворотньому напрямку по тому
ж шляху. Незважаючи на те що всі реальні процеси необоротні, поняття
оборотного процесу відіграє важливе пізнавальне значення так само, як і
поняття ідеального газу.

Повернемося тепер до розгляду ідеального двигуна Карно. Він заснований
на представленні оборотного циклу. Оборотний цикл-це послідовність
оборотних процесів, за допомогою яких дана речовина (робоче тіло)
переводиться з початкового зрівноваженого стану через багато інших
зрівноважених станів і повертається знову в той же початковий стан.
Зокрема, у двигуні Карно використовується цикл Карно, причому як робоче
тіло розглядається ідеальний газ. (Для реального газу PV-діаграма циклу
трохи зміниться.) Виберемо крапку а як початковий стан.

PV- діаграма

Газ спочатку розширюється ізотермічно й оборотно по шляху аb при
температурі Тн; для цього можна уявити собі, що газ приводиться в
контакт із гарячим термостатом при температурі Tн, що повідомляє
кількість теплоти | QH | робочому тілу. Потім газ розширюється
адіабатично й оборотно по шляху bс; на цій ділянці передача теплоти
(теплообміну) взагалі не відбувається і температура газу знижується до
значення TL. На третій стадії циклу відбувається ізотермічний оборотний
стиск газу по шляху cd тут необхідний контакт із холодним термостатом
при температурі TL, якому робоче тіло передає кількість теплоти | QL |.
Нарешті, газ адіабатично стискається по шляху da, повертаючи знову у
вихідний стан. Таким чином, цикл Карно складається з двох ізотермічних і
двох адіабатичних оборотних процесів.

Неважко показати, що результуюча робота, виконана в одному циклі
двигуном Карно (чи взагалі будь-яким двигуном, що використовує оборотний
цикл), чисельно дорівнює площі, обмеженої криволінійними відрізками, що
утворюють цикл на PV-діаграмі крива abсd.

Розділ 5

Нездійсненна мрія (“Вічний двигун”)

Бертольд. Perpetuum mobile, то есть вечное движение. Если найду вечное
движение, то я не вижу границ творчеству человеческому … видишь ли,
добрый мой Мартин, делать золото — задача заманчивая, открытие, может
быть, любопытное, но найти perpetuum mobile … О!…

А. С. Пушкин. “Сцены из рыцарских времён”

Сучасне життя людини неможливе без використання найрізноманітніших
машин, що полегшують його життя. За допомогою машин людина обробляє
землю, добуває нафту, руду, інші корисні копалини, пересувається і т.д.
Основною властивістю машин є їхня здатність виконувати роботу.

В усіх механізмах і машинах перш ніж зробити роботу енергія переходить з
одного виду в іншій. Не можна одержати енергії одного виду більше чим
іншого при будь-яких перетвореннях енергії, тому що це суперечить закону
збереження енергії. У зв’язку з цим не можна створити вічний двигун,
тобто такий двигун в якому у результаті перетворення енергії одного виду
її виходить більше, ніж було.

Закон збереження і перетворення енергії є основним у сучасному
природознавстві. Енергія, що є мірою руху матерії,має наступні різновиди
: механічна, електрична, теплова, магнітна, атомна та ін. Кожна з них
може перетворюватися одна в одну, причому в зовсім визначених
співвідношеннях, і при цьому кількість енергії залишається незмінною.
Загальна кількість енергії замкнутої матеріальної системи є величина
постійна, змінюються тільки різні види цієї енергії, випробуючи взаємні
перетворення.

Закон збереження енергії був сформульований ще в 1748 році М. В.
Ломоносовим, що писав : “…так, коли де убуде трохи матерії, то
збільшиться в іншім місці; …Цей загальний природний закон
простирається й у самі правила руху, тому що тіло, що рухає своею силою
інше, стільки ж втрачає енергії, скільки передає іншому”.

Багато винахідників намагалися побудувати машину — вічний двигун, здатну
робити корисну роботу без яких-небудь змін усередині машини. Усі ці
спроби закінчувалися невдачею.

Вічний двигун (лат. perpetuum mobile) — уявний, але нездійсненний
двигун, що після пуску його в хід робить роботу необмежено довгий час.
Кожна машина, що діє без припливу енергії ззовні, після закінчення
деякого проміжку часу цілком витратить свій запас енергії на подолання
сил опору і повинна зупинитися, тому що продовження роботи означало б
одержання енергії з нічого.

От як писав про значення для людства вічного двигуна чудовий французький
інженер Саді Карно : “ Загальне і філософське поняття “perpetuum mobile”
містить у собі не тільки уявлення про рух, що після першого поштовху
продовжується вічно, але дія приладу, здатного розвивати в необмеженій
кількості рушійну силу, здатної виводити послідовно зі спокою всі тіла
природи, якби вони в ньому знаходилися, порушувати в них принцип
інерції, здатного, нарешті, черпати із самого себе необхідні сили, щоб
надати руху усьому Всесвіту, підтримувати і безперервно прискорювати
його рух. Таке було б дійсне створення рушійної сили. Якби це було
можливо, то стало б марним шукати рушійну силу в потоках води і повітря,
у пальному матеріалі, ми мали б нескінченне джерело, з якого могли б
нескінченно черпати.”

Вічні двигуни звичайно конструюють на основі використання наступних чи
прийомів їхніх комбінацій :

1) підйом води за допомогою архімедового гвинта;

2) підйом води за допомогою капілярів;

3) використання колеса з вантажами, що не можуть зрівноважитись;

4) природні магніти;

5) електромагнетизм;

6) пара або стиснене повітря.

Ідея вічного руху була дуже популярна в середньовіччя. Володіння
секретом такого двигуна здавалося більш привабливим, чим навіть
мистецтво робити золото з недорогоцінних металів. Безліч людей займалося
цією нерозв’язною проблемою. Серед них були навіть люди з непоганим на
той час походженням. Відомо, що безліч праць Ньютона містять конструкції
вічного двигуна. У записах Леонардо да Вінчі теж були знайдені кілька
нарисів perpetuum mobile.

Найбільше часто зустрічається модель вічного двигуна, що дотепер
відроджується в різних варіаціях завдяки горе-винахідникам, заснована на
застосуванні колеса з незрівноваженими вантажами.

До країв колеса прикріплені відкидні палички з вантажами на кінцях. При
всякім положенні колеса вантажі на правій стороні будуть відкинуті далі
від центру, ніж на лівій; ця половина повинна перетягати ліву і тим
самим змушувати колесо обертатися. Виходить, колесо буде обертатися
вічно, принаймні доти, поки не перетреться вісь. Так думав невідомий
винахідник. Але цього не буде відбуватися, і от чому : хоча вантажі на
правій стороні завжди далі від центру, але неминуче таке положення, коли
число цих вантажів менше, ніж на лівій. Тоді система врівноважується,
отже, колесо не буде обертатися, а, зробивши кілька хитань, зупиниться.

Деякі винахідники вічних двигунів були просто шахраями, що спритно
“надували” легковірну публіку. Одним з найбільш видатних “винахідників”
був деякий доктор Орфіреус (дійсне прізвище — Бесслер). Перепробувавши
безліч занять, він прийшов до відкриття вічного двигуна. Основним
елементом його двигуна було велике колесо, що ніби-то не тільки
оберталося саме собою, але і піднімало при цьому важкий вантаж на значну
висоту. Цей доктор мав безліч високопоставлених заступників, таких як
польський король Август II, ландграф Гессен-Кассельский. Останній надав
винахіднику свій замок і усіляко випробував машину. Цим двигуном
зацікавився і Петро I, що подумував про його придбання. Однак Орфіреус
погоджувався продати машину не менш ніж за 100000 рублів, з чого слідує,
що він одержував великий прибуток від неї. Він був, мабуть,
найщасливішим авантюристом, тому що безбідно прожив до старості,
одержуючи чималі гроші від показу машини. Однак його “вічний двигун”
виявився далеко не вічним — його пускали в хід брат і служниця, смикаючи
за мистецько захований мотузок.

Іншим прикладом вічного двигуна може служити наступна машина.Олія чи
вода, налита в судину, піднімається ґнотами спочатку у верхню судину, а
відтіля іншими ґнотами — ще вище; верхня судина має жолоб для стоку
олії, що падає на лопатки гвинта, приводячи його в обертання. Олія, що
стекла вниз, знову піднімається по ґнотах до верхньої судини. Таким
чином, струмінь олії, що стікає по жолобку на колесо, ні на секунду не
переривається, і колесо постійно повинно знаходитися в русі… Але тут
криється помилка : чому винахідник думає, що олія повинна стікати вниз з
верхньої, загнутої частини ґнота ? Капілярне притягання, переборовши
силу ваги, підняло рідину нагору по ґноті; але та ж причина утримує
рідину в порах намоклого ґнота, не даючи їй капати з його. Якщо
допустити, що у верхню судину уявної вертушки від дії капілярних

сил може просочитися рідина, то треба буде визнати, що ті ж ґноти можуть
перенести її назад у нижній за допомогою тих же сил.

Цей проект нагадує інший, винайдений ще в 1575 році італійським
механіком Страдою Старшим, і потім повторювався в численних варіаціях.
Архимедів гвинт, обертаючи, піднімає воду у верхній бак, відкіля вона
випливає з лотка струменем, що вдаряє в лопатки водяного колеса. Водяне
колесо обертає точильний камінь і одночасно рухає … той самий
Архимедів гвинт, що піднімає воду у верхній бак. Гвинт повертає колесо,
а колесо — гвинт !.. Але тут автор забуває про всім відому силу тертя,
що за певний проміжок вичерпне енергію гвинта.

В історії винаходів вічного двигуна магніт

зіграв не останню роль.От приклад такого

двигуна, описаного в XVII столітті єпископом

Джоном Вілкенсоном.Сильний магніт міститься

на колонці. До неї притулені два похилих жолоби,

один під іншим, причому верхній має невеликий

отвір у верхній частині, а нижній – зігнутий.

Якщо на верхній жолоб покласти невелику залізну кульку, то внаслідок
притягання магнітом він покотиться вгору, однак, дійшовши до отвору, він
провалиться в нижній жолоб , скотиться по ньому, підніметься по
кінцевому заокругленню і знову потрапить на верхній жолоб. Таким чином,
кулька буде бігати безупинно, здійснюючи тим самим вічний рух.

Тут відразу видно всю абсурдність цього винаходу. Чому кулька буде
скочуватися вниз? Вона скочувалася б, якби була тільки під дією сили
ваги. Але на неї діє магніт, що гальмує його спуск, і отже, кулька не
буде мати досить енергії для того, щоб піднятися по заокругленню і
почати цикл спочатку.

Велику популярність одержала у винахідників вічного двигуна ідея
з’єднання динамо-машини з електромотором. Усі подібні проекти зводяться
до наступного — треба шківи динамо-машини й електромотора з’єднати
ременем, а провід від динамо-машини підвести до електромотора. Після
первісного імпульсу машини почнуть виробляти енергію, і це буде
продовжуватися до нескінченності. Тут усе зводиться до того, що якби не
було тертя, вони б дійсно оберталися вічно. Але дивно, що винахідникам
не приходить у голову інший проект — з’єднати два шківи ременем і дати
поштовх. Перший шків, обертаючись, приведе в рух другий, а другий, у
свою чергу, передасть енергію на рух першому.

Усі вищенаведені двигуни були двигунами першого роду, тобто такими
двигунами, що порушують перший початок термодинаміки. Відповідно до
першого закону термодинаміки ми маємо

Будь-яка машина може робити роботу над зовнішніми тілами тільки за
рахунок одержання ззовні кількості теплоти Q (тобто енергії) чи
зменшення своєї внутрішньої енергії (U.

Порівняно мало було спроб щодо створення вічних двигунів другого роду.
Для роботи звичайного теплового двигуна необхідно мати нагрівач і
холодильник. Дуже привабливим здається завдання створення теплової
машини, що могла б робити механічну роботу з використанням нагрівача.

Вічний двигун другого роду не протирічить закону збереження енергії і
тому цікавить багатьох вчених. Подібні машини змогли б перетворювати
теплову енергію в механічну. При цьому передача механічної енергії
назовні супроводжувалася б поступовим охолодженням джерела теплової
енергії.Якби вдалося сконструювати такий двигун, то його можна було б
використати для отримання механічної енергії з теплової енергії океану.

На основі підрахунків встановлено, що при охолодженні світового океану
тільки на один градус можна одержати енергію 1026 Дж, якої вистачило б
для забезпечення всіх потреб людства при сучасному рівні її споживання
на 14000 років.

Дійсно, від океану мохна отримати деяку кількість теплоти, врахувавши,
що температура поблизу поверхні вища, ніж на глибині. Оскільки різниця
температур становить Т1-Т2 ( 10 К або навіть менша, то максимально
можливий ККД в даному випадку (=(Т1-Т2)/(Т1) тобто порядку 1/30.

Можливість створення такої машини, названої вічним двигуном другого
роду, не суперечить першому закону термодинаміки. Однак усі відомі на
сьогодні результаты дослідів свідчать про те, що створення вічного
двигуна другого роду, є настільки ж нерозв’язним завданням, як і
виготовлення вічного двигуна першого роду. Цей досвідчений факт
прийнятий у термодинаміку в якості другого основного постулату – другого
закону термодинаміки.

Теплопередача мимоволі відбувається тільки в одному напрямку – від
гарячого тіла до холодного. Виходить, щоб енергія теплового руху молекул
води світового океану перетворилася в механічну енергію, необхідно мати
робоче тіло, температура якого нижче температури води в океані.

З цього випливає, що нездійсненно термодинамічний процес, у результаті
якого відбувалася би передача тепла від одного тіла до іншого, більш
гарячому, без яких-небудь інших змін у природі. Інакше кажучи, неможливо
побудувати періодично діючу машину, що безупинно перетворювала б теплоту
в роботу тільки за рахунок охолодження одного тіла, без того щоб у
навколишніх тілах не відбулося одночасно яких-небудь змін.

Фізичний зміст другого закону термодинаміки полягає в тім, що енергія
теплового руху молекул речовини в одному відношенні якісно відрізняється
від всіх інших видів енергії – механічної, електричної, хімічної,
ядерної і т.д. Ця відмінність полягає в тім, що енергія будь-якого виду,
крім енергії теплового руху молекул, може цілком перетворитися в
будь-який вид енергії, у тому числі в енергію теплового руху. Енергія ж
теплового руху молекул може перетворюватися в будь-який інший вид
енергії лише частково. У результаті цього будь-який фізичний процес у
якому відбувається перетворення якого-небудь виду енергії в енергію
теплового руху молекул, є необоротним процесом, тобто він не може бути
здійснений цілком у зворотному напрямку.

Вічний двигун – романтична мрія подвижників, що хотіли дати людству
безмежну владу над природою, жадане джерело збагачення для шарлатанів і
авантюристів; сотні, тисячі проектів, так ніколи не здійснених;
хитромудрі механізми, що, здавалося, от-от повинні були запрацювати, але
чомусь залишалися в нерухомості; розбиті долі фанатиків, обмануті надії
меценатів… Але через що все це відбувалося ? Через незнання
елементарних фізичних законів, через бажання з нічого одержати все.
Дотепер у патентні бюро надходять заявки з пристроями, що власне кажучи
є вічними двигунами. Очувидно, у самій ідеї вічного двигуна криється
якась таємниця, щось, що змушує людей шукати і шукати його секрет. Але,
видно так влаштована людина…

Висновки

Для того, щоб пояснити відсутність оборотності процесів, учені в
другій половині минулого століття прийшли до формулювання нового закону,
відомого за назвою другий початок термодинаміки. Теплота в природних
умовах переходить від гарячого тіла до холодного, у той час як від
холодного тіла до гарячого теплота сама по собі не переходить. Другий
початок термодинаміки – закон зростання ентропії: у замкнутої (тобто
ізольованої в тепловому і механічному відношенні) системі ентропія або
залишається незмінною (якщо в системі протікають зворотні, рівноважні
процеси), або зростає (при нерівних процесах) і в стані рівноваги
досягає максимуму. Суть у тому, що в замкнутій системі ентропія може
тільки зростати або залишатися сталою. Інакше кажучи, у всякій
ізольованій системі теплові процеси однонаправлені, що і приводить до
збільшення ентропії. Варто ентропії досягти максимуму, як теплові
процеси в такій системі припиняються, що означає прийняття всіма тілами
системи однакової температури і перетворення усіх форм енергії в
теплову. Виникнення стану термодинамічної рівноваги приводить до
припинення всіх макропроцесів, що й означає стан “теплової
смерті”.Неможливий періодичний процес, єдиним результатом якого було б
перетворення теплоти Q при незмінній температурі цілком у роботу W (так
що W= Q).Неможливо здійснити періодичний процес, єдиним результатом
якого був би добір теплоти в однієї системи при даній температурі і
передача в точності тієї ж кількості теплоти іншій системі при більш
високій температурі.

Фізичний зміст другого закону термодинаміки полягає в тому, що енергія
теплового руху молекул речовини в одному відношенні якісно відрізняється
від всіх інших видів енергії – механічної, електричної, хімічної,
ядерної і т.д. Ця відмінність полягає в тому, що енергія будь-якого
виду, крім енергії теплового руху молекул, може цілком перетворитися в
будь-який вид енергії, у тому числі в енергію теплового руху. Енергія ж
теплового руху молекул може зазнавати перетворення в будь-який інший вид
енергії лише частково. У результаті цього будь-який фізичний процес, у
якому відбувається перетворення якого-небудь виду енергії в енергію
теплового руху молекул, є необоротним процесом, тобто він не може бути
здійснений цілком у зворотному напрямку.

Вираз “машина,що діє періодично”, слід розуміти так, що її робоче тіло
здійснює цикли , отже воно в результаті циклу не зазнає ніяких змін і не
втрачає своєї енергії. Якби можна було побудувати таку теплову машину,
то вона працювала б внаслідок охолодження атмосфери, земної кори, води
морів і океанів, тобто за рахунок практично невичерпних джерел енергії.

Список використаних джерел

Ихак-Рубінер Ф. Вічний двигун. М., 1922.

Кабардін О. Ф. Фізика : Довідкові матеріали. М., 1991.

Орд-Хьюм А. Вічний рух. М., 1980.

Перельман Я. И. Цікава фізика. М., 1991.

Д.Джанколі Фізика М.,”МИР”,1989

Блудов М.І. Бесіди з Фізики Київ “Радянська школа” , 1989

Дж. Орір Фізика Москва “МИР”, 1981

PAGE

PAGE 29

A’ = Q – (U.

Нашли опечатку? Выделите и нажмите CTRL+Enter

Похожие документы
Обсуждение

Ответить

Курсовые, Дипломы, Рефераты на заказ в кратчайшие сроки
Заказать реферат!
UkrReferat.com. Всі права захищені. 2000-2020