AeA?AEAAIEE OI?AA?NEOAO «EUeA?ANUeEA IIE?OAOI?EA»

Eaceie? ssAAEA

OAeE: 62-83: 621.313.3

*ANOIOII — EA?IAAIEE ANEIO?IIIEE AEAEO?II?EA?Ae IAOAEO?A?EIEO
O?AINII?OIEO E?I?E

Niaoe?aeuei?noue 05.09.03 — Aeaeo?ioaoi?/i? eiiieaene oa nenoaie

Aaoi?aoa?ao

aeena?oaoe?? ia caeiaoooy iaoeiaiai nooiaiy

aeieoi?a oaoi?/ieo iaoe

Euea?a — 1998

Aeena?oaoe?y ? ?oeiienii

?iaioa aeeiiaia a Iie?oaoi?/iiio ?inoeooo? *ainoioiaa (Iieueua)

Iaoeiaee eiinoeueoaio: aeieoi? oaoi?/ieo iaoe, i?ioani?

Eiceinueeee I?ano THe?aiiae/

(AeO «Euea?anueea iie?oaoi?ea»)

Io?oe?ei? iiiiaioe: aeieoi? oaoi?/ieo iaoe, i?ioani?

Ieaooeia Iiaeyi A?eai?iae/

(AeO «Euea?anueea iie?oaoi?ea»)

aeieoi? oaoi?/ieo iaoe, i?ioani?

Eicy?oe Aiaoie?e ?aoeo??ae/

(Aea?aeaaiee a??ie/ee oi?aa?neoao, Naieo-Iaoa?ao?a, ?in?y)

aeieoi? oaoi?/ieo iaoe, i?ioani?

Naaeiaee Ieaenaiae? Aaeaioeiiae/

(Aei?i?iaeca?aeeinueeee Aea?aeaaiee oaoi?/iee oi?aa?neoao)

I?ia?aeia i?aai?caoe?y: ?inoeooo aeaeo?iaeeiai?ee

IAI Oe?a?ie, i. Ee?a

Caoeno a?aeaoaeaoueny 26 a?oaeiy 1998 ?ieo i 10 aiae 00 oa ia can?aeaii?
niaoe?ae?ciaaii? ?aaee Ae 35.052.02 i?e Aea?aeaaiiio oi?aa?neoao?
«Euea?anueea iie?oaoi?ea» ca aae?anith: 290646 i. Euea?a, aoe. N.
Aaiaea?e, 12.

C aeena?oaoe??th iiaeia iciaeiieoenue o iaoeiai-oaoi?/i?e a?ae?ioaoe?
Aea?aeaaiiai oi?aa?neoaoo «Euea?anueea iie?oaoi?ea»

(290646 i. Euea?a, aoe. I?ioani?nueea, 1)

Aaoi?aoa?ao ?ic?neaiee » » eenoiiaaea 1998 ?ieo

A/aiee nae?aoa? niaoe?ae?ciaaii? ?aaee

eaiaeeaeao oaoi?/ieo iaoe Oaaaaeei I.?.

CAAAEUeIA OA?AEOA?ENOEEA ?IAIOE

Aeooaeuei?noue i?iaeaie. Iaeiei c aaaeeeaeo iai?yie?a ?icaeoeo
aeaeo?ii?eaiaeo ? aeine?aeaeaiiy, noai?aiiy iiaeo eiino?oeoe?e oa noai ?
ai?iaaaeaeaiiy, iia’ycai? c oi?aae?iiyi oa ?aaoethaaiiyi aneio?iiieo
iaoei. Aaaeeea?noue oe??? i?iaeaie aeieeaa? c iiioey?iino? aneio?iiiiai
aeaeaoia c ei?ioeicaieiooei ?ioi?ii ye aeaiaioa aeaeo?ii?eaiaeo, yeee
oa?aeoa?eco?oueny iecueeeie ?iaanoeoe?eieie e aenieoaoaoe?eieie
cao?aoaie. Oe? /eiieee, a oaeiae no/ani? iiaeeeaino? /anoioiiai
oi?aae?iiy coiiaeee caoe?eaaeai?noue oe?ieiai caaaeo
i?iaeoii-eiino?oeoi?nueeeo i?aai?caoe?e oa aeine?aeiee?a ii?aoethaaiiyi
iiaeo nenoai aeeaeaiiy oa no?oeoo? oi?aae?iiy e ?aaoethaaiiy.
I?aeoaa?aeaeaiiyi oe??? aeoiee ? oaeoe i?aai?caoe?? i?aeia?iaeieo
iaoeiai-oaoi?/ieo eiioa?aioe?e c i?iaeai ea?iaaiiai aeaeo?ii?eaiaeo, ia
yeeo i?iaeaiai /anoioii-ea?iaaiiai aneio?iiiiai aeaeo?ii?eaiaeo
i?enay/aii aeecueei iieiaeie aeiiia?aeae, iaae?neaieo niaoe?ae?noaie c?
anueiai na?oo.

I?iaeaie /anoioii-ea?iaaiiai aneio?iiiiai aeaeo?ii?eaiaeo o?nii
iia’ycai? c i?iaeaiaie oaoiieia?e, a yeeo aeei?enoiaothoueny oe?
i?eaiaee.

Iaoaeo?a?ei? ?ieueaaiae ? iaaecae/aeii aaaeeeaith eaieith
iaoaeo?a?eiiai oaoiieia?/iiai i?ioeano, ine?eueee aiie caaacia/othoue
iaia?a?ai?noue i?ieaoee. A?ae iaae?eiino? ?iaioe ?ieueaaia?a caeaaeeoue
ye?noue ae?ia?a oa i?iaeoeoeai?noue iaoaeo?a?eiiai eiia?iaoo. ?ieueaaiae
iaeaaeaoue aei o?ainii?oieo nenoai ? aeei?enoiaothoueny a e?i?yo
iaia?a?aiiai ?iceeao noae?, aa?y/i? oa oieiaeii? i?ieaoee eeno?a, o?oa
oa ?i. I?iaaaeai? aeine?aeaeaiiy i?iaeaiiino?oaaee, ui iiooaei?noue oeeo
e?i?e neeaaea? 20% iiaii? iiooaeiino? i?ieaoiiai noaio. Ca?aene aeieea?
i?iaeaia iiaea?i?caoe?? oeeo e?i?e, iniaeeai a /anoei? ?o
aeaeo?ii?eaiae?a.

Aeo?aeiith aacith aeey ye?niiai i?iaeooaaiiy nenoai aeaeo?ii?eaiaeo
ci?iiiai no?oio iaoaeo?a?eieo o?ainii?oieo e?i?e ? ?acoeueoaoe anaa?/ieo
aenia?eiaioaeueieo oa neioeyoe?eieo aeine?aeaeaiue. Neioeyoe?ei?
aeine?aeaeaiiy ia no/anieo eiii’thoa?ao aeiaaathoue aeineiiaeeo
iaoaiaoe/ieo iiaeaeae, a yeeo a?aoiaaii an? aecia/aeuei? o?ce/i?
oaeoi?e. Oea oaa?aeaeaiiy iaeeiaeiai noino?oueny ye aeaeo?e/ieo iaoei,
oae ? aeaea?ae aeeaeaiiy, ia’?aeiaieo ca aeiiiiiaith nenoai
?aeaioeo?eaoe?? oa ea?oaaiiy.

Iacaaaeath/e ia aeinyaiaiiy a aaeoc? aeine?aeaeaiiy aeaeo?ii?eaiaeo
o?ainii?oieo nenoai, ye ?iaeea?aeoaeueiiai oae ? a?oiiaiai, i?iaeaia
aeine?aeaeaiiy nenoai aeaeo?ii?eaiae?a iaoaeo?a?eieo o?ainii?oieo e?i?e
c a?aooaaiiyi ?o niaoeeo?/ieo iniaeeainoae nueiaiaei? ia ? ?ica’ycaiith.
Aeaeaea a?ae naiai caaa?oaiiy ? i?iaeaia iaoaiaoe/iiai iiaeaethaaiiy
oaeeo neeaaeieo aeaeo?iiaoai?/ieo eiiieaen?a. Oiio noai?aiiy iaoiaeo
aeine?aeaeaiiy i?ioean?a ? oa?aeoa?enoee /anoioii-ea?iaaiiai
aneio?iiiiai aeaeo?ii?eaiaeo ?ieueaaia?a c o?aooaaiiyi iaoai?/ieo
aca?iiae?e o?ainii?oieo nenoai, aeaeo?iiaai?oieo ca’yce?a a noaoe/ieo
ia?aoai?thaa/ao ? aneio?iiieo aeaeaoiao, aieeao nenoai ea?oaaiiy
i?eaiaeo ia oaoiieia?/iee i?ioean ? i?iaaaeaiiy ca aeiiiiiaith oeueiai
iaoiaeo eiiieaeno aeine?aeaeaiue c aea/aiiy aeeiai?/ieo ? eaac?onoaeaieo
?aaeei?a, a oaeiae ae?iaeaiiy ?aeiiaiaeaoe?e uiaei i?iaeooaaiiy oa
i?aaeeueii? aenieoaoaoe?? nenoai aeaeo?ii?eaiaeo a oe?eiio ? ia
nueiaiaei?oi?e aeaiue aeooaeueiith i?iaeaiith.

Oaia aeena?oaoe?? i?enay/aia ieoaiith iiaea?i?caoe?? o?ainii?oieo e?i?e
i?aei?e?inoa iaoaeo?a?eii? i?iieneiaino? ?anioae?ee Iieueua. Caaea/ath
iiaea?i?caoe?? aoei ai?iaaaeaeaiiy iiaeo nenoai c aenieei eiao?oe??ioii
ei?enii? ae??, i?i?iaeueieie aenieoaoaoe?eieie cao?aoaie, aenieith
iaae?ei?noth. Aeacai? aeiiae caaacia/o? /anoioii-ea?iaaiee aneio?iiiee
aeaeo?ii?ea?ae c oe?enoi?ieie oa o?aicenoi?ieie ia?aoai?thaa/aie c?
ooo/iith eiiooaoe??th oeio PWM ? DTC. Oaeeie i?eaiaeaie iiaeia ea?oaaoe
a caeaaeiino? a?ae caaeaiiai e?eoa??y yeino?, eiio?iethth/e iaiao?aei?
eii?aeeiaoe oa ia?aiao?e aeaeo?iiaoai?/ii? nenoaie.

Ca’ycie ?iaioe c iaoeiaeie i?ia?aiaie, ieaiaie, oaiaie. Aeena?oaoe?y
aeeiiaia a *ainoioianueeiio iie?oaoi?/iiio ?inoeooo? (Iieueua) ca?aeii c
i?ia?aiaie I?i?noa?noaa ia?iaeii? ina?oe ? BR — 21/89-93 ? Eii?oaoo
iaoeiaeo aeine?aeaeaiue ? BS 21/303A/ FPH/95/97. ?acoeueoaoe
aeine?aeaeaiue ai?iaaaeaeoaaeenue ca?aeii c Aeiaiai?ii ? BZ-21-103/ R/W
i?ae *ainoioianueeei iie?oaoi?/iei ?inoeoooii ? *ainoioianueeei
iaoaeo?a?eiei eiia?iaoii.

Iaoa ? caaea/? aeine?aeaeaiiy. Iaoith aeena?oaoe?eii? ?iaioe ? noai?aiiy
eiiieaeniiai iaoiaeo aeine?aeaeaiiy aeeiai?ee /anoioii-ea?iaaieo
aaaaoiiaoeiieo aneio?iiieo aeaeo?ii?eaiae?a ia iniia? no/anieo
iaoaiaoe/ieo iiaeaeae oa i?ia?aiii-oaoi?/ieo cania?a ? eiai canoinoaaiiy
aei aiae?co e iioei?caoe?? a?oiiaeo aeaeo?ii?eaiae?a iaoaeo?a?eieo
o?ainii?oieo e?i?e.

Eiiieaeni?noue iaoiaeo iieyaa? a ioiieaii? a?aooaaiiy aieeao ?iaioe
iaoai?ci?a ?ieueaaia?a ia ye?noue ia?aiao??a o?ainii?oiaaii? nioae,
cie?aia aieeao oaeeo oaeoi??a ye: ianeio?iii?noue e?i?eieo oa eooiaeo
oaeaeeinoae, aenoeaio?e/i?noue aaee?a ?ieueaaia?a, yea aeieea?
aiane?aeie ae?? ??cieo /eiiee?a, i?iaoeniaoaaiiy aaee?a.

Aeey aeinyaiaiiy iinoaaeaii? iaoe iaiao?aeii ?ica’ycaoe oae? caaea/?:

aecia/eoe ia?aiao?e ? oa?aeoa?enoeee iaoai?ci?a iaaaioaaeaiiy aeaeaoi?a,
a oaeiae noi?ioethaaoe e?eoa??? yeino? c a?aooaaiiyi ia?aiao??a
iaoaeo?a?eiiai oaoiieia?/iiai i?ioeano;

c?iaeoe aiae?c eiino?oeoe?e, noai ? nenoai ea?oaaiiy /anoioii-ea?iaaieo
aneio?iiieo aeaeo?ii?eaiae?a aeey ?ieueaaiaiaeo e?i?e;

cae?enieoe ?aeaioeo?eaoe?th ia?aiao??a ia’?eo?a ?aaoethaaiiy
aeine?aeaeoaaieo nenoai;

c aeei?enoaiiyi iaeaoo MATLAB-SIMULINK ?ic?iaeoe iiaeae? aeey
aeine?aeaeaiiy aeeiai?ee /anoioii-ea?iaaieo aneio?iiieo aeaeo?ii?eaiae?a
iaoaeo?a?eieo o?ainii?oieo e?i?e;

i?iaanoe iaoiaeii eiii’thoa?iiai neioethaaiiy oe?ieee niaeo?
aeine?aeaeaiue aeey aiae?co oa iioei?caoe?? ia?aiao??a nenoai
/anoioii-ea?iaaiiai aneio?iiiiai aeaeo?ii?eaiaeo, ai?iaaaeaeaieo ia
iaoaeo?a?eiiio eiia?iao? a i. *ainoioia? (Iieueua);

aeeiiaoe aenia?eiaioaeuei? aeine?aeaeaiiy c iaoith ia?aa??ee
aaeaeaaoiino? iaoaiaoe/ieo iiaeaeae oa ?acoeueoao?a iioei?caoe??.

Iaoeiaa iiaecia iaea?aeaieo ?acoeueoao?a. Aia?oa cai?iiiiiaaii
eiiieaeniee iaoiae aeine?aeaeaiiy ia ia?niiaeueieo eiii’thoa?ao
/anoioii-ea?iaaieo aaaaoiiaoeiieo aneio?iiieo aeaeo?ii?eaiae?a
iaoaeo?a?eieo o?ainii?oieo e?i?e c a?aooaaiiyi ye iaoai?/ieo ca’yce?a
?ieueaaia?a, oae ? aeaeo?iiaai?oieo ca’yce?a o neeia?e /anoei?
aeaeo?ii?eaiaeo, ?o aca?iieo aieea?a, a oaeiae ia?aoai?aiiy ?ioi?iaoe??
a nenoaiao ea?oaaiiy. Iniiaieie neeaaeiaeie cai?iiiiiaaiiai iaoiaeo ?
iiaeae? aneio?iiieo iaoei ? ia?aoai?thaa/?a /anoioe ia aac? ?iaa?oi??a
iai?oae oeio PWM ? DTC noai?ai? c aeei?enoaiiyi i?ioeaaeo? iaeaoo
MATLAB-SIMULINK.

Cai?iiiiiaaiee iaoiae aeaa ciiao io?eiaoe ?acoeueoaoe, iicia/ai?
iaoeiaith iiaeciith:

ca aeiiiiiaith i?iaaaeaieo aeine?aeaeaiue aecia/aii ca’ycie i?ae
i?enei?aiiyie oa oiiaaie ?iaioe ?ieueaaiaiaiai a?oiiaiai
aeaeo?ii?eaiaeo;

aeey ooi/iaieo e?eoa???a yeino? ?ic?aoiaaii aeiionoeia i?enei?aiiy, yea
caaacia/o? caaeaio ii?iaoeaio ye?noue eaoaii? nioae;

aeoiaey/e c oiia caaacia/aiiy iio??aieo oaoiieia?/ieo iieaciee?a
o?ainii?oieo e?i?e aecia/aii ia?aiao?e aeaeaoi?a c eiie?aoiei
a?aooaaiiyi ae?aiaciio ?aaoethaaiiy oaeaeeino? e ia iniia? oeueiai
ii?aoeueiaaii i?eioeeie noai?aiiy eiino?oeoe?e ? i?iaeooaaiiy
?ieueaaiaiaeo aeaeaoi?a, ye? aeathoue ciiao io?eiaoe oa?aeoa?enoeee
iaiao?aei? aeey caaacia/aiiy ye?niiai i?ioeano o?ainii?ooaaiiy
iaoaeo?a?eieo ae?ia?a;

a?aoiaoth/e yaeua ?icneio?ii?caoe?? oaeaeeinoae oa aenoeaio?e/i?noue
aaee?a o?ainii?oii? e?i??, aeey ocaaaeueiaieo ia?aiao??a ciaeaeaii
caeaaeiino? i?ae oaeaee?noth ?ooo ae?iao ? eiai ye?noth;

ooi/iaii niin?a ?aaoethaaiiy iai?oae aenieiiiiaioiiai ?ieueaaiaiaiai
aeaeaoia, yeee aea? iiaeeea?noue ca?eueoeoe ae?aiacii ?aaoethaaiiy;

cai?iiiiiaaii nenoaio aeaeo?ii?eaiaeo c ei?aeoe??th oa?aeoa?enoeee U-f,
ui aeaei ciiao i?ae’?aeiaoe aenieiiiiaioiee aeaeaoi aaciina?aaeiuei aei
aaeea ?ieueaaiao. Aeiaeaoeiaith ia?aaaaith oeueiai i?eaiaeo ? iaeaea
100% iaae?ei?noue ?iaioe. Oaeee oei aeaeo?ii?eaiaeo iaa?aeiiee ca
iaaeaie Iieueu?;

noai?aii iiaee eean ?ieueaaiaiaeo aeaeaoi?a, ye? canoiniaai? a
o?ainii?oieo e?i?yo eeno?a, o?oa ? neya?a i?e iaia?a?aiiio ?iceea?
noae?.

I?aeoe/ia cia/aiiy iaea?aeaieo ?acoeueoao?a. ?acoeueoaoe oai?aoe/ieo
aeine?aeaeaiue eyaee a iniiao oaoi?/ieo i?iaeo?a, ai?iaaaeaeaieo ia
iaoaeo?a?eieo i?aei?e?inoaao o aeaeyae? i?iaeoii-eiino?oeoi?nueeeo
?ic?iaie. Oaie oeeo ?ic?iaie, aeoe ai?iaaaeaeaiiy yeeo iaaaaeaii a
aeena?oaoe??, ? oaeeie:

?ic?iaea nenoaie aeaeo?ii?eaiaeo aeey ?ieueaaia?a o cii?
ii?iae?caoe?eii? ia/? c aeei?enoaiiyi aneio?iiieo aeaeaoi?a c
oe?enoi?iei ?aaoethaaiiyi iaa?o?a.

Ai?iaaaeaeaiiy nenoaie aeaeo?ii?eaiaeo aeey ?ieueaaia?a o cii?
ii?iae?caoe?eii? ia/? c aeei?enoaiiyi aneio?iiieo aeaeaoi?a c
oe?enoi?iei ?aaoethaaiiyi iaa?o?a.

Iiaea?i?caoe?y nenoaie aeaeo?ii?eaiaeo ?ieueaaia?a ii?iae?caoe?eii? ia/?
ae?eyiee WBG iaoaeo?a?eiiai eiia?iaoo a *ainoioia? (Iieueua).

Iiaea?i?caoe?y nenoaie aeaeo?ii?eaiaeo ao?aeii? ee?o? a iai?yieo
iie?auaiiy ?? aeeiai?/ieo oa?aeoa?enoee.

?ic?iaea oa noai?aiiy i?ioioeio a?ae??ceo ?ieueaaiaiai? e?i?? c
iecueei/anoioiei aeaeo?ii?eaiaeii o ?aeii? ?ieueaaiaa ?502 WBG
iaoaeo?a?eiiai eiia?iaoo a *ainoioia? (Iieueua).

Eiioeaioe?y iiaea?i?caoe?? ?ieueaaia?a caaaioaaeoaaeueii?,
?icaaioaaeoaaeueii? oa i?ieaoii? e?i?e WBG iaoaeo?a?eiiai eiia?iaoo a
*ainoioia? (Iieueua).

Canoinoaaiiy ia?aoai?thaa/?a /anoioe a nenoaiao aeaeo?ii?eaiae?a
iaoaeo?a?eieo ?ieueaaia?a.

Aeaeo?iiaoai?/ia nenoaia aeaeo?ii?eaiaeo iaoaeo?a?eieo ?ieueaaia?a ?c
canoinoaaiiyi iioi?aaeoeoi??a oeio 2SM-HC, 2NM-HC.

Eiioeaioe?y iiaea?i?caoe?? nenoai aeaeo?ii?eaiaeo aieiaieo o?ainii?oieo
?ieueaaia?a ia ae?eyioe? i?ieaooaaiiy o?oa WBG iaoaeo?a?eiiai eiia?iaoo
a *ainoioia? (Iieueua).

?ic?iaea aneio?iiiiai aeaeaoia ?ieueaaiaa COS.

Nenoaia ?ieueaaiaiaiai aeaeo?ii?eaiaeo. Iaoaio ?anioae?ee Iieueua
??-286903.

Ai?iaaaeaeaiiy oeeo ?ic?iaie cia/ii i?aeaeueei ye?noue iaoaeo?a?eieo
ae?ia?a ? aeaei aeiiii?/iee aoaeo a 1990-1996 ??. 2233982 iiaeo ceioeo.

?ic?iaeai? i?ia?aie i?aaenoaaeythoue niaith ae?aeiaiao nenoaio, yea aea?
ciiao niaoe?ae?noai a iaeano? aeaeo?ii?eaiaeo aeine?aeaeoaaoe aeeiai?eo
? oa?aeoa?enoeee /anoioii-ea?iaaieo aneio?iiieo aeaeo?ii?eaiae?a. Oi?ia
i?aaenoaaeaiiy ?acoeueoao?a aeine?aeaeaiue o aeaeyae? aiaeia?ao?a
aaeoi??a no?oi?a ? iioieiuaieaiue aea? iaaeyaeio ea?oeio i?ioean?a, ye?
i?io?eathoue o aeaeaoi? i?ae /an ?iaioe aeaeo?ii?eaiaeo ? ? aia?aoii
aiae?co oeeo i?ioean?a.

Anoeiaoi? iaai?oiiai iioieo ? aeaeo?iiaai?oiiai iiiaioo, aeei?enoaiee a
aenia?eiaioaeueieo aeine?aeaeaiiyo, ?icoe?th? iiaeeeaino? aiae?co
i?ioean?a a ae?th/iio aneio?iiiiio aeaeaoi?.

Iniaenoee aianie caeiaoaa/a. O ?iaioao iaienaieo o ni?aaaoi?noa?
aeena?oaioia? iaeaaeeoue: a [14, 15, 17, 22-24, 32] — niiniae ?ic?aooieo
aeaeo?iiaai?oieo ? aeaeo?iiaoai?/ieo ia?aiao??a ?ieueaaiaiaeo
aneio?iiieo aeaeaoi?a c? niaoe?aeueiith eiino?oeoe??th ?ioi?a; a [10] —
noai?aii aeene?aoio iiaeaeue iai?ai?ia?aeieeiaiai ia?aoai?thaa/a ye
aeaea?aea aeeaeaiiy aneio?iiiiai aeaeaoia; a [20] — cai?iiiiiaaii
e?iaa?eciaaio iiaeaeue a?oiiaiai aeaeo?ii?eaiaeo ie?aii aea?aiiai
a?ae??cea ?ieueaaiaiai? e?i??; a [21] — ia iniia? i?ioeaaeo?e oaeaeeiai
ia?aoai?aiiy Oo?’? noai?aii iiaeaeue niinoa??aa/a oace no?oio a?oie
aneio?iiieo aeeaieiiacieo aeaeaoi?a; a [26] — i?aaenoaaeaii nenoaio
iaia?a?aiiai ?aaoethaaiiy ?aaeoeaii? ? iiaii? iiooaeiinoae iaoaeo?a?eieo
aeaeo?ii?eaiae?a; a [28 — 30] — ?ic?iaeaii eiioeaioe?th nenoai aeeaeaiiy
e oi?aae?iiy aeey ?ieueaaiaiaeo e?i?e o?oa, neya?a ? eeno?a.

Ai?iaaoe?y ?acoeueoao?a aeena?oaoe??. Iniiai? ?acoeueoaoe
aeena?oaoe?eii? ?iaioe iaaiai?thaaeenue oa io?eiaee iiceoeaiee a?aeaoe
ia oaeeo iaoe?iiaeueieo oa i?aeia?iaeieo eiioa?aioe?yo ? iaoeiaeo
nai?ia?ao:

1-?e ?a?iiaenuee?e eiioa?aioe?? A?A “Power Electronics and Application”,
A?thnnaeue, 1985.

iaoeiai-oaoi?/i?e eiioa?aioe?? “Aaoiiaoecaoe?y aeaeo?ii?eaiae?a ?
oaoiieia?/ieo i?ioean?a”, *ainoioiaa, 1986.

iaoeiai-oaoi?/i?e eiioa?aioe?? “Eiii’thoa?i? iaoiaee a aaoiiaoeoe? oa
aeaeo?ioaoi?oe?”, Iie?oaoi?ea *ainoioianueea, 1986.

IV-iio iaoeiaiio neiiic?oi? “Iai?yiee ?icaeoeo aeaeo?e/ii? iao?ieia??”,
Aa?oaaa, 1987.

iaoeiai-oaoi?/i?e eiioa?aioe?? “No/ani? i?iieneia? aeaeo?ii?eaiaee
ci?iiiai no?oio”, *ainoioiaa, 1987.

i?aeia?iaei?e eiioa?aioe?? “IC on Electrical Machines and Drives”,
Aaeaea?aea (Aano?ae?y), 1987.

aenooi? c iaoeiaith aeiiia?aeaeth a oi?aa?neoao? VUB, A?thnnaeue, 1987.

X-?e e?aeia?e eiioa?aioe?? c aaoiiaoeee, Ethae?i, 1988.

2-?e i?aeia?iaei?e eiioa?aioe?? ICED-88, A?ania (?oioi?y), 1988.

aeiiia?ae? a Ia??oiieueneiio iaoaeo?a?eiiio ?inoeooo?, 1988.

aeiiia?ae? “A?oiiaie /anoioii-?aaoee?oaiue aneio?iiiue yeaeo?ii?eaiae.
Iaoaiaoe/aneea iiaeaee”, IYE, 1989.

IV-?e eiioa?aioe?? “?aiiio a aia?aaoeoe?”, Ethae?iaoeue (Iieueua), 1989.

iaoeia?e aeiiia?ae? o o??i? SIEMENS, Erlangen-Dillingen, O?I, 1990.

IV-?e e?aeia?e eiioa?aioe?? c i?iiaeaeo?ii?ee, Aa?oaaa, 1990.

aeiiia?ae? a MEZ, Vsetin (*ao?y), 1990.

IV-?e ?a?iiaenuee?e eiioa?aioe?? A?A “Power Electronics and
Application”, Oei?aioe?y (?oae?y), 1991.

e?aeia?e eiioa?aioe?? NIA-92, Aa?oaaa-Caaaea (Iieueua), 1992.

I-?e oa II-?e e?aeiaeo eiioa?aioe?yo “Iaoaeo?a?ei? aeaeo?ii?eaiaee”,
1995, 1997.

i?aeia?iaei?e eiioa?aioe?? “Electrical Drives and Power Electronics”
EDPE96, Eio?oea (Neiaa//eia), 1996.

II-?e i?aeia?iaei?e eiioa?aioe?? c aeaeo?iiaoai?ee ? aeaeo?ioaoiieia??,
E?ei, 1996.

VI-?e i?aeia?iaei?e eiioa?aioe?? «I?iaeaiu aaoiiaoece?iaaiiiai
yeaeo?ii?eaiaea. Oai?ey e i?aeoeea» , E?ei, 1998.

Ie??i oeueiai, ie?ai? o?aaiaioe aeena?oaoe?eii? ?iaioe aoee iaaiai?ai?
ia iaoeiaeo nai?ia?ao *ainoioianueeiai iie?oaoi?/iiai ?inoeoooo oa
AeO “Euea?anueea iie?oaoi?ea,” a oaeiae ia cai?ao iaoeiaiai ina?aaeea
Oiaa?enoaa iieuenueeeo aeaeo?ee?a.

Ca ai?iaaaeaeaiiy ?acoeueoao?a aeine?aeaeaiue aaoi? io?eiaa o 1990 ?ioe?
iaai?iaeo I?i?no?a ia?iaeii? ina?oe 2-ai nooiaiy ca iaoeia? oa
iaoeiai-oaoi?/i? aeinyaiaiiy. ?aaeith *ainoioianueei? ai?aiaenueei?
i?aai?caoe?? Iaoeiai-oaoi?/iiai oiaa?enoaa aaoi?a a?aecia/aii
iaai?iaeith 1-ai nooiaiy ca aeaeaoi? aeinyaiaiiy a oaoi?/i?e aaeoc?.

Ioae?eaoe??. Ca ?acoeueoaoaie aeine?aeaeaiue o aaeoc? ?ieueaaiaiaiai
aeaeo?ii?eaiaeo ci?iiiai no?oio iioae?eiaaii 58 i?aoeue, c ieo 12
iaeiiin?aieo, io?eiaii 3 iaoaioe.

No?oeoo?a aeena?oaoe?eii? ?iaioe. Aeena?oaoe?y neeaaea?oueny c anooio,
oanoe ?icae?e?a, aeniiae?a, nieneo e?oa?aoo?e a e?eueeino? 176
iaeiaioaaiue oa aeiaeaoe?a. Iniiaiee oaeno ?iaioe aeeeaaeaiee ia 239
noi??ieao oa i?noeoue 177 ?enoie?a ia 79 noi??ieao ? 20 oaaeeoeue ia 9
noi??ieao.

CI?NO ?IAIOE

O anooi? iaa?oioiaaii aeooaeuei?noue, iaoeiao iiaecio oa i?aeoe/io
oe?ii?noue, noi?ioeueiaaii iaoo aeine?aeaeaiue oa iieiaeaiiy, ye?
aeiinyoueny ia caoeno.

O ia?oiio ?icae?e? aeaii oa?aeoa?enoeeo iaoaeo?a?eieo o?ainii?oieo e?i?e
(?en. 1) ye iaaaioaaeaiue aeey /anoioii-ea?iaaieo aneio?iiieo
aeaeo?ii?eaiae?a.

?en. 1. Eeaneo?eaoe?y iaoaeo?a?eieo o?ainii?oieo e?i?e.

Iienaii ooieoe?iiaeuei? caeaaeiino? aeey oaeaeeino? ia?ai?uaiiy
iacaiieo o?ainii?oieo e?i?e ye ia’?eo?a c aeaiia noaiaiyie naiaiaee ?
iaaecaiieo ye ia’?eo?a c o?ueiia noaiaiyie naiaiaee.

Cina?aaeaeaii oaaao ia oa?aeoa?enoeeao oa ia?aiao?ao iaaaioaaeaiiy
aeaeaoi?a ?ieueaaiaiaeo e?i?e. O oeeo e?i?yo aeei?enoiaothoueny ye
a?oiiaee, oae ? ?iaeea?aeoaeueiee aeaeo?ii?ea?ae. ?iaeea?aeoaeuei?
aeaeo?ii?eaiaee, ye? ? c’?aeiaiiyi aeaeaoia c aaeeii ?ieueaaiaa ?
aeeaeyoueny a?ae iaeiiai ea?iaaiiai aeaea?aea, iaeaaeaoue aei eeano
a?oiiaeo aeaeo?ii?eaiae?a c oi/ee ci?o niiniao aeeaeaiiy. Oaeee oei
i?eaiaeo ? i?aaeiaoii aiae?co oiia iaaaioaaeaiiy ie?aieo aeaeaoi?a.
?ioei aaaeeeaei /eiieeii oa?aeoa?o iaaaioaaeaiiy ? aca?iiae?y i?ae
ie?aieie naeoe?yie o?ainii?oii? e?i??. Caeaaeii a?ae ni?aa?aeiioaiiy
oaeaeeinoae ie?aieo non?aei?o naeoe?e ?ieueaaiaa iiaeeeaa neio?iiia aai
aneio?iiia ?iaioa e?i??. Aeeiai?/iee iiiaio ia aaeeo ?ieueaaiaa
aecia/a?oueny oi?ioeith:

Mae = Mae(t) — (Mno + M() , (1)

aea: Mae(t) — aeaeo?iiaai?oiee iiiaio, noai?aiee aeaeaoiii; Mae —
aeeiai?/iee iiiaio; Mno+M( — neeaaeia? iiiaioo iaaaioaaeaiiy: noaoe/iiai
Mno oa ?iioeueniiai M(.

Noaoe/iee iiiaio Mno aeieea? c ao?ao ia oa?oy a i?aeoeiieeao ? ia oa?oy
nioae ia aaeie i?ae /an i?ioeano eiacaiiy aaeea. ?iioeueniee iiiaio
?ieueaaiaa M( a?aoiao? aaiiao??th aaeea c oi/ee ci?o eiai
aenoeaio?e/iino? ? ? ooieoe??th eooa iiai?ioo aaeea. Aenoeaio?e/iee ?oo
aaeea ni?e/eiaiee i?iaeiii ?aie ?ieueaaiaa, i?iaeiii o i?aeoeiieeiaeo
aoceao, i?iaeiii i?ae oeaio?aie oyae?iiy oa a?nnth neiao???
i?aeoeiiee?a, aee?eaeaiiyi aaeea a ?acoeueoao? o?ainii?ooaaiiy nioae
aeniei? oaiia?aoo?e, oaea?o o?ainii?oiaaiiai eenoa a ?acoeueoao?
a?aenooiino? ieineino? i?ieaooaaii? nioae. O aeena?oaoe?? iaaaaeaii
ae?ace aeey aecia/aiiy noaoe/iiai oa ?iioeueniiai iiiaio?a. Oai aea
iienaii aeai?eoi aecia/aiiy eiao?oe??io?a, ye? aoiaeyoue o oe? oi?ioee.

Aeey ia?aa??ee oeeo oi?ioe ? aeei?enoaieo o ieo eiao?oe??io?a cae?eniaii
o?ce/iee aenia?eiaio ia ?iai/iio ?ieueaaiao. Inoeeeia?aie aeey
oaeaeeinoae, iiiaio?a ? no?oi?a, ui a?aeiia?aeathoue ?iaio? ?ieueaaiaa
i?ae /an o?ainii?ooaaiiy eenoa, iiaeai? oa i?iaiae?ciaai? a
aeena?oaoe?ei?e ?iaio?. Cie?aia, ioe?iaii neio?iiio e aneio?iiio ?iaioo
?ieueaaiaiaeo naeoe?e. Ii?aoeueiaaii aenia?eiaioaeueii ciyo? ae?aa?aie
iiiaio?a ? oaeaeeinoae, a io?eiai? aeey ieo iaoaiaoe/i? ae?ace
aeei?enoaii a iiaeaeueoeo aeine?aeaeaiiyo.

*anoeia oeueiao ?icae?eo i?enay/aia oi?ioaaiith e?eoa??y yeino?
aeaeo?ii?eaiae?a o?ainii?oieo e?i?e, a yeiio a?aoiaai? oaoiieia?/i?
ia?aiao?e i?ioeano. O?ainii?oi? e?i?? onoaoeiaai? aaaaoiiaoeiieie
aeaeo?ii?eaiaeaie ci?iiiai no?oio, ye? ooai?ththoue iaai? a?oie —
oaoiieia?/i? naeoe??- iiaeooue aeeaeoeny aeaiia niiniaaie:
?iaeea?aeoaeueiei c aeei?enoaiiyi nenoaie ea?oaaiiy aeuiai ??aiy (?en.
2) ? nenoai c ?aeeiei aeaea?aeii aeeaeaiiy ? ?aeeiith nenoaiith
ea?oaaiiy (?en. 3).

?en. 2. ?iaeea?aeoaeueia nenoaia aeeaeaiiy a?oie aeaeaoi?a

PC1, PC2, PCn — ia?aoai?thaa/? /anoioe, NUR — nenoaia ea?oaaiiy
aa?oiueiai ??aiy, S1, S2, Sn — neaiaee ea?oaaiiy

?en. 3. Nenoaia aeaeo?ii?eaiaeo c ?aeeiei aeaea?aeii aeeaeaiiy ?

?aeeiith nenoaiith ea?oaaiiy

PC — ia?aoai?thaa/ /anoioe, US — nenoaia ea?oaaiiy.

Iacaeaaeii a?ae niiniao aeeaeaiiy a?oie aeaeaoi?a ye?noue i?ioeano
ea?oaaiiy ioe?ith?oueny oaeeie ia?aiao?aie:

— a?aeiiniith ??cieoeath eooiai? oaeaeeino?;

— a?aeiiniith ??cieoeath iaeneiaeueieo eooiaeo oaeaeeinoae;

— a?aeiiniei cia/aiiyi ??cieoe? na?aaei?o oaeaeeinoae;

— a?aeiiniei cia/aiiyi ??cieoe? no?oio aeaeaoi?a;

— iaeneiaeueiei a?aeiiniei cia/aiiyi ??cieoe? no?oi?a aeaeaoi?a,

aea (i-1, (i — eooia? oaeaeeino? i-1 i i-ai aeaeaoia; (* — caaeaia
cia/aiiy eooiai? oaeaeeino?; [(i]=[(1, (2, … , (i, … , (n] — aaeoi?
eooiaeo oaeaeeinoae aeaeaoi?a; [Ii]=[I1, I2, … , Ii, … ,In] — aaeoi?
no?oi?a aeaeaoi?a; Ii-1, Ii — no?oie i-1 i i-ai aeaeaoia;IN —
iii?iaeueiee no?oi.

Oe? ia?aiao?e ooai?ththoue aaeoi?:

(2)

I?ioean o?ainii?ooaaiiy nioae aeey aea?aii? ae?eyiee ?ieueaaiaa aoaea
iioeiaeueiei, yeui ao?aoe aia?a?? a eiaeai iiiaio /ano aoaeooue
i?i?iaeuei?. Inoaii? iieiaeaiiy oi?ioeth? e?eoa??e yeino?
ooieoe?iioaaiiy a?oiiaiai ?ieueaaiaiaiai i?eaiaeo. Iaoaiaoe/iee ae?ac
oaeiai e?eoa??th caieno?oueny o aeaeyae? eaaae?aoe/ii? oi?ie:

, (3)

aea iao?eoey E ia? aeaeyae:

, (4)

Ju — iiiaio ?ia?oe?? iaoai?/ii? nenoaie, i?eaaaeaiee aei aaeo aeaeaoia;
Ls — ?iaeoeoeai?noue iaiioee noaoi?a.

Aeey caaacia/aiiy yeino? oaoiieia?/iiai i?ioeano aeei?enoiaothoueny
a?aeiia?aei? ii?ie, cie?aia BSEN10163 (Aaeeeia?eoai?y), yea aecia/a?
aeiiae uiaei noaio iiaa?oi? aa?y/aeaoaieo eeno?a ??cii? oe?eie.
Aeoiaey/e c oeeo ii?i oa iaaaaeaieo o aeena?oaoe?? caeaaeiinoae
oaa?aeino? ca ?ieaaeeii aai ca A?ea?nii, iienothoueny aeiionoei? ci?ie
oaeaeeino? a /an? aeey ?ieueaaiaa, ui ? iaiao?aeiei aeey i?aaeeueiiai
ooieoe?iioaaiiy nenoaie ea?oaaiiy.

O ae?oaiio ?icae?e? iienaii no/ani? aeaeo?ii?eaiaee ci?iiiai no?oio aeey
iaoaeo?a?eieo o?ainii?oieo e?i?e. Oae? aeaeo?ii?eaiaee eeaneo?eothoueny
a?aeiia?aeii aei noaie, cia?aaeaii? ia ?en.4.

?en. 4. Eeaneo?eaoe?y aeaeo?ii?eaiae?a.

sse ?ieueaaiaia? aeaeo?ii?eaiaee i?iiiio?oueny canoiniaoaaoe naiiiano/?
eiino?oeoe?? iioi?aaeoeoi??a. Ia iaoaeo?a?eiiio eiia?iao? «*ainoioiaa»
(Iieueua) ai?iaaaeaeaii na??? iioi?aaeoeoi??a 2NM-HC i 2SM-HC,
oa?aeoa?enoeeaie yeeo ? naiiiano/?noue eiino?oeoe??, iiaeeea?noue ?iaioe
i?e ia?aeinao, /anoeo ci?iao oaeaeeino? iaa?oaiiy, aaeeeee ioneiaee
iiiaio. Oe? iioi?aaeoeoi?e noai?ai? a ?acoeueoao? ?ic?iaee naiiiano/i?
eiino?oeoe?? ?aaeoeoi?a, c’?aeiaiiai c aeaeo?e/iei aeaeaoiii, i?e
a?aeiia?aeiiio canoinoaaii? oaoiieia?? eiai aeaioiaeaiiy. Iioi?aaeoeoi?e
i?ecia/ai? aeey ?iaioe a eaaeeo, na?aaei?o oa aaaeeeo oiiaao. O
ai?iaaaeaeaieo iioi?aaeoeoi?ao canoiniaaii o?eueee na??ei? aneio?iii?
aeaeaoie c ei?ioeicaieiooei ?ioi?ii, iiooaeiinoyie 0.75(55 eAo ?
oaeaeeinoyie iaa?oaiiy 725, 950, 1450 ia/oa. E??i iioi?aaeoeoi??a o
oeueiio ?icae?e? iienai? ioooe oa c’?aeioaa/?, ui canoiniaothoueny a
nenoaiao aeaeo?ii?eaiaeo iaoaeo?a?eieo o?ainii?oieo e?i?e.

?en. 5. Iaoai?/i? oa?aeoa?enoeee aenieiiiiaioieo aeaeaoi?a:

SHe250-8 aeey f=5Aoe p = 4; 3SHK224a aeey f = 50 Aoe p = 12.

Ie?aio oaaao i?eae?eaii eiino?oeoe?? ?ieueaaiaiaeo aneio?iiieo
aeaeaoi?a. ?ieueaaiaiaee aeaeaoi ye aeaiaio iaoaeo?a?eii? o?ainii?oii?
e?i?? iiaeiai a?aeiia?aeaoe oaeei aeiiaai: ioneiaee iiiaio aeecueeee aei
e?eoe/iiai; aenieee eean ?cieyoe??; iiaeeea?noue ieaaii? ci?ie
oaeaeeino? iaa?oaiiy; aenieee nooi?iue caoenoo, ui iiynith?oueny
?iaioith a oiiaao i?aeaeuaii? aieiaino?. Eiino?oeoe?y oaeeo aneio?iiieo
aeaeaoi?a aoea ii?aoeueiaaia ? ai?iaaaeaeaia a o?ainii?oi?e e?i?? neya?a
onoaiiaee iaia?a?aiiai ?iceeao noae? oa e?i?? o?ainii?ooaaiiy eeno?a.
?ic?aoiaaii ? ai?iaaaeaeaii o?e eeane aeaeaoi?a: c ii?iaeueiith
eiino?oeoe??th ? iioei?ciaaiith ?ioi?iith ee?oeith c eaooi? I63-CuZn37 c
ieoiiei iii?ii (=0.007 [Ii.ii2/i]; c aeeaieei iacii; aenieiiiiaioi? ia
iii?iaeueio /anoioo 50Aoe ? iiieaeaio — 5Aoe. Oe? aeaeaoie i?ecia/ai?
aeey aaciina?aaeiueiai iaoai?/iiai c’?aeiaiiy c aaeeii ?ieueaaiaa.
?ic?aooieia? aeai? oeeo aeaeaoi?a i?eaaaeai? o aeaeyae? oaaeeoeue a
aeena?oaoe??. Iaoai?/i? oa?aeoa?enoeee ni?iaeoiaaieo aenieiiiiaioieo
aneio?iiieo aeaeaoi?a iieacai? ia ?en.5.

Aeaoaeueii ?icaeyioo? noaie ? iniiae ea?oaaiiy ia?aoai?thaa/aie /anoioe
ia aac? ?iaa?oi??a iai?oae, ye? canoiniaothoueny a iaoaeo?a?eieo
o?ainii?oieo e?i?yo. Aiae?co?oueny neaey?ia ? aaeoi?ia ea?oaaiiy, a
oaeiae i?yia ea?oaaiiy iiiaioii (Direct Torque Control). O ia?oeo aeaio
aeiaaeeao aeei?enoiaothoueny ?iaa?oi?e iai?oae oeio PWM (c
oe?ioii-?iioeueniith iiaeoeyoe??th), a a inoaiiueiio aeei?enoiao?oueny
?aaoethaaiiy iai?oae a ooieoe?? aeaeo?iiaai?oiiai iiiaioo ? iaai?oiiai
iioieo, ui iiaeeeaa o?eueee a nenoai? «iai?ai?ia?aeieeiaee ia?aoai?thaa/
— aneio?iiiee aeaeaoi». Ooieoe?iiaeuei? noaie, cia?aaeai? ia ?en. 6 — 8
iiyniththoue i?eioeei ?iaioe a?aeiia?aeieo nenoai ea?oaaiiy.

?en. 6. Noaia neaey?iiai ea?oaaiiy ia?aoai?thaa/ai /anoioe

?M — ?aaoeyoi? iiiaioa; ?O — ?aaoeyoi? oaeaeeino?; AO — aeie iaiaaeaiue;
U-f — ooieoe?iiaeueiee ia?aoai?thaa/ iai?oaa — /anoioa; AIE — aeie
ia?aoai?aiiy eii?aeeiao.

?en. 9 iiynith? i?eioeei aeeth/aiiy cono??/ii-ia?aeaeueieo o?aicenoi??a
? ae?iae?a ye eeth/?a aeey oi?ioaaiiy cia?aaeoth/iai aaeoi?a iai?oae,
yeee o naith /a?ao oi?io? aaeoi? iaai?oiiai iioieo oa aeaeo?iiaai?oiee
iiiaio. Aeie eia?/ieo ia?aeeth/aiue a?aei?aoeueiao? oaeo aaee/eio e=1,
2, 3, 4, 5, 6, yea caaacia/o? caaeaiee aeaeo?iiaai?oiee iiiaio ?
iaai?oiee iio?e ca?aeii c ?en. 8. I?ioeane, ui i?io?eathoue o oeeo
noaiao, a oaeiae a?aeiia?aei? iaoaiaoe/i? caeaaeiino? aeaoaeueii iienaii
a 2-io ?icae?e? aeena?oaoe??.

?en. 7. Noaia aaeoi?iiai ea?oaaiiy ia?aoai?thaa/a PWM.

?en. 8. Noaia ea?oaaiiy c ?iaa?oi?ii DTC:

BLP — aeie eia?/ieo ia?aeeth/aiue, BS — aeie ?aeaioeo?eaoe?? naeoi?a,
MS-E(M — aeie ?aeaioeo?eaoe?? oa anoeiaoe?? iioieo oa iiiaioo,

RR — a?noa?aceni? ?aaoeyoi?e.

?en. 9. Aei iiyniaiiy i?eioeeio ?iaioe ?iaa?oi?a oeio DTC.
Oaci? iai?oae a ??cieo oaeoao ia?aeeth/aiue.

O o?aoueiio ?icae?e? cae?eniaii ?aeaioeo?eaoe?th aeaeo?iiaoai?/ieo
ia?aiao??a ia’?eo?a ea?oaaiiy iaoaeo?a?eieo o?ainii?oieo e?i?e. I?ae
oa?i?iii ?aeaioeo?eaoe?y ia?aiao??a ia?ii ia oaac? aecia/aiiy
eiao?oe??io?a ??aiyiue, ye? iienothoue ie?ai? ia’?eoe ?
aeei?enoiaothoueny a iiaeaeyo aeaeo?ii?eaiaeo ye ea?iaaii?
aeaeo?iiaoai?/ii? nenoaie. Aecia/aiiy ia?aiao??a iia’ycaia c aeo?aeieie
aeiiouaiiyie.

Aneio?iiiee aeaeaoi aea?aaeaioo?oueny canooiiith noaiith, cia?aaeaiith
ia ?en. 10.

?en. 10. Canooiia noaia aeeaieiiaciiai aneio?iiiiai aeaeaoia

i?e a?aooaaii? aoaeoo aeo?niaiiy no?oio.

O oe?e noai? ia?aiao?e ?ioi?ii? iaiioee a?aoiaothoue aeo?niaiiy no?oio,
a iane/aiiy ii oeyoao ?iai/iai iiey a?aoiao?oueny ?iaeoeoeai?noth Lm.
Ia?aiao?e iaiioee ?ioi?a aecia/ai? i?e oaeeo aeiiouaiiyo: iaai?oia eiei
iaiane/aia, iaai?oia i?iieeeea?noue noa?aeiy ?ioi?a noaiiaeoue SYMBOL
109 \f «Symbol» \s 13 o, aeiaaeeia noa?aeiy ? cia/ii a?eueoith ca eiai
iiia?a/i? ?ici??e, ?iciiae?e ?iaeoeoe?? iaai?oiiai iiey ? ooieoe??th
aaiiao??? iaca. A aeena?oaoe?? iaaaaeai? oi?ioee, ye? aeathoue
iiaeeea?noue aecia/eoe iii?e noa?aeiy ?ieueaaiaiaiai aeaeaoia: c
aeeaieiiaciei ?ioi?ii; c? noa?aeiai ie?oaei? oi?ie; aenieiiiiaioiiai.
Ie?aia /anoeia ?icae?eo i?enay/aia aecia/aiith ?iaeoeoeaiino? Lm i?e
a?aooaaii? iane/aiiy. Oey ?iaeoeoeai?noue aecia/a?oueny oi?ioeith:

, (5)

aea: Lmo — ?iaeoeoeai?noue iaai?oiiai iiey, noai?aiiai aieiaiei iioieii
aac a?aooaaiiy iane/aiiy; km — eiao?oe??io, ui a?aoiao? iane/aiiy
iaai?oiiai eiea caeaaeii a?ae oi/ee ?iaioe iaoeie ? ci?ith?oueny ca?aeii
?c a?aeiia?aeiith caeaaei?noth a ?ioa?aae? km=1,02-1,5; bm — eiao?oe??io
ianeioni?aeaeueiino? oi?ie iiey.

Ae?oaith aaaeeeaith /anoeiith aeaeo?ii?eaiaeo ? iaoai?/ia nenoaia
«o?ainii?oiaaiee iaoa??ae — aaeie — aae aeaeaoia». Aieea iaoai?/ii?
nenoaie oa ?? no?oeoo?e ia ye?noue i?ioeano o?ainii?ooaaiiy ? iaeeiaeiai
aaaeeeaei ii??aiyiii c aieeaaie nenoaie aeeaeaiiy oa ea?oaaiiy.
C?icoi?ei, ui i?aaeeueia aecia/aiiy ia?aiao??a iaoai?/ii? /anoeie
a?ae?a?a? aaaiio ?ieue. Aaaeei iienaoe iaeiicia/ii ia?aiao?e, ui
caeaaeaoue ye a?ae aeaeo ?ieueaaiaa, oae ? a?ae o?ainii?oiaaiiai
iaoa??aeo (eeno, o?oaa, neya oiui). Oiio a aeena?oaoe?? iaaaaeai?
oaaeeoe?, ye? i?noyoue ?ioi?iaoe?th uiaei eiao?oe??io?a i?oaeiino?
ne?o/oaaiiy, iiiaio?a ?ia?oe??, iiaeoe?a i?oaeiino?, eiao?oe??io?a
oa?oy.

Iai?ai?ia?aeieeia? ia?aoai?thaa/? /anoioe ?icaeyaeathoueny ye ia’?eoe c?
ci?iiith no?oeoo?ith oa iino?eieie ia?aiao?aie ca?aeii c ?en. 9. O
ca’yceo c oeei /enei e — oaeo?a ia?aeeth/aiiy aecia/a? noaio c’?aeiaiiy,
a ioaea ? iai?oao ia aneio?iiiiio aeaeaoi?.

Nenoaia ea?oaaiiy iieno?oueny aeeoa?aioe?eieie ??aiyiiyie a?aeiia?aeii
aei no?oeoo?ii? noaie ? ia?aaeaaaeueieo ooieoe?e ?aaoeyoi??a.
Eiao?oe??ioe ia?aaeaaaeueieo ooieoe?e, ye? aoiaeyoue o caaaeai?
aeeoa?aioe?ei? ??aiyiiy, aecia/athoueny o?aaeeoe?eieie iaoiaeaie oai???
aaoiiaoe/iiai ea?oaaiiy.

Ia?o? o?e ?icae?ee ?iaioe ? iniiaith aeey noai?aiiy iaoaiaoe/ieo
iiaeaeae ea?iaaieo aeaeo?iiaoai?/ieo nenoai, i?iaaaeaiiy neioeyoe?eieo
oa aenia?eiaioaeueieo aeine?aeaeaiue.

O /aoaa?oiio ?icae?e? i?eaaaeai? iaoaiaoe/i? iiaeae? nenoai
aeaeo?ii?eaiaeo, noai?ai? a na?aaeiaeu? iaeaoo MATLAB-SIMULINK.
Eiiieaenia iiaeaethaaiiy oaoiieia?/iiai i?ioeano o?ainii?ooaaiiy
iaoaeo?a?eieo ae?ia?a aeiaaa? noai?aiiy noaiiaeaeae ie?aieo aoce?a.
?ic?iaeaii oae? noaiiaeae?: nenoaie ea?oaaiiy aa?oiueiai ? ieaeiueiai
??ai?a c o?aooaaiiyi caaaeaieo e?eoa???a; aeaea?ae aeeaeaiiy, ui
ooai?ai? iaaieie oeiaie noaoe/ieo ia?aoai?thaa/?a; aneio?iiieo
aeaeaoi?a, ye ia?aoai?thaa/?a aeaeo?e/ii? aia?a?? a iaoai?/io;
iaoai?/ii? /anoeie o?ainii?oii? e?i??.

Iiaeaeue a?oiiaiai aneio?iiiiai aeaeo?ii?eaiaeo ?ieueaaiaa cia?aaeaia ia
?en. 11.

?en. 11. Iao?e/ia noaia a?oiiaiai i?eaiaeo

A?oiiaee aeaeo?ii?ea?ae ia aac? aneio?iiieo aeaeaoi?a ooai?aiee c N
iaoei, i?ae’?aeiaieo aei iaeiiai aeaea?aea aeeaeaiiy. Iaoaiaoe/ia
iiaeaeue a?oie aeaeaoi?a aaco?oueny ia iiaeae? aneio?iiiiai aeaeaoia ye
ie?aiiai aeaiaioa. C oi/ee ci?o niinoa?aaeiino? aeaeo?iiaoai?/ieo yaeu
a?oie aeaeaoi?a ?noioiei ? aecia/aiiy cia/aiue o?ueio neeaaeiaeo aaeoi?a
noaio X, ye? ooai?ththoue aeo?aeiee aaeoi? Y. Ca’ycie i?ae aeo?aeiei
aaeoi?ii oa aaeoi?ii noaio iieno?oueny caeaaei?noth

, (6)

aee iao?eoey ca’yce?a Mw ia? aeaeyae:

, (7)

. Ia?o? aeaa aeaiaioe aaeoi?a Yi(t) — oea neeaaeia? no?oio noaoi?a,
aecia/ai? a nenoai? inae (-(, a o?ao?e aeaiaio oeueiai aaeoi?a — eooiaa
oaeaee?noue i-ao aeaeaoia.

A?oia c N -aeaeaoi?a iieno?oueny iao?eoeath:

. (8)

C oi/ee ci?o aeine?aeaeaiiy a?oiiaiai aeaeo?ii?eaiaeo aaaeeeai ciaoe
aaee/eio no?oio, niiaeeaaiiai aecia/aiith ae?eyieith o?ainii?oii? e?i??,
oa eooia? oaeaeeino? aeaeaoi?a, ye? iathoue aieea ia iieacieee yeino?
oaoiieia?/iiai i?ioeano. Aeai?eoi aecia/aiiy oeeo no?oi?a ? oaeaeeino?
iiynith? noaia, cia?aaeaia ia ?en. 11.

Aneio?iiiee ?ieueaaiaiaee aeaeaoi ? ie?aiei aeaiaioii nenoaie
aeaeo?ii?eaiaeo, ui neeaaea? iniiaiee aocie iiaeaethaaiiy oaoiieia?/iiai
i?ioeano. Eiai aaeoi? noaio (6) ? aeo?aeiith oi/eith aeey noai?aiiy
iiaeae? a?oie aeaeaoi?a. Aeaeaoi ?icaeyaea?oueny ye aeaiaio c? ci?iieie
ia?aiao?aie, a yeeo iaeii/anii a?aoiaothoueny yaeua aeo?niaiiy no?oio oa
iane/aiiy iaai?oiiai eiea. Aeo?aeieie aeiiouaiiyie aeey noai?aiiy
iiaeae? aneio?iiiiai aeaeaoia (e??i aeiiouaiue aeey aecia/aiiy
ia?aiao??a iaiioee ?ioi?a) ?: iaiioea noaoi?a ? neiao?e/ia o?eoacia;
iaooo?oueny aieea ai?cio?ii?? oa a?noa?aceno; iaai?oia ?iaeoeoe?y a
iia?o?yiiio i?ii?aeeo ? neioni?aeaeueia.

Nenoaia ??aiyiue, ui iieno? aneio?iiiee aeaeaoi, ia? aeaeyae:

, (9)

aee: Us,r ; Is,r ; SYMBOL 89 \f «Symbol» s,r ; Rs,r — a?aeiia?aeii
aaeoi?e iai?oa, no?oi?a, iioie?a oa iao?eoey aeoeaieo iii??a noaoi?a (s)
oa ?ioi?a (r); J, D, k — iaoai?/i? ia?aiao?e aeaeaoia c a?aooaaiiyi
?iai/iai i?aaio; J — iiiaio ?ia?oe??; D — eiao?oe??io oa?oy; k —
eiao?oe??io i?oaeiino? aaeo, ui a?aoiao?oueny o aeiaaeeo
aaciina?aaeiueiai c’?aeiaiiy aaeo aeaeaoia ? aaeea; Mel, Mz — iiiaioe
aeaeaoia oa iaaaioaaeaiiy; ( — eoo iiai?ioo ?ioi?a; SYMBOL 119 \f
«Symbol» — eooiaa oaeaee?noue aaeo aeaeaoia.

Nenoaia ??aiyiue (9) ? aaciaith aeey aiae?co aeeiai?ee nenoaie i?e
iaeii/aniiio canoinoaaii? oai??? oi?oa?ii? o?ainoi?iaoe?? iiaeae? oa
iaoiaeo ci?iieo noaio aei iieno i?ioean?a o a?oiiaiio aeaeo?ii?eaiae?.
Ia ?en. 12 iaaaaeaia aeie-noaia ?ieueaaiaiaiai aneio?iiiiai aeaeaoia,
?aae?ciaaia a na?aaeiaeu? iaeaoo MATLAB-SIMULINK.

?en. 12. Aeie-noaia ?ieueaaiaiaiai aneio?iiiiai aeaeaoia.

Iiaeaeue aeey aeine?aeaeaiiy aeeiai?ee iaoai?/ii? /anoeie ?ieueaaiaiai?
o?ainii?oii? e?i??, noai?aia ia iniia? e?iaiaoe/ii? noaie (?en. 13),
iieacaia ia ?en. 14.

?en. 13. E?iaiaoe/ia noaia nenoaie aeaeaoi-ioooa-?aaeoeoi?-aaeie.

?en. 14. Iiaeaeue iaoai?/ii? /anoeie ?ieueaaiaa

I?aeo?ae aei iiaeaethaaiiy ?aooe ia’?eo?a nenoaie ? aiaeia?/iei, a ?o
?aae?caoe?y ca aeiiiiiaith aeie?a na?aaeiaeua MATLAB-SIMULINK aeaoaeueii
iienaia a aeena?oaoe?ei?e ?iaio?. Oa?aeoa?iith iniaeea?noth oeeo
iiaeaeae ? iayai?noue ae?aeiaiaiai na?aaeiaeua aeey caaeaiiy ia?aiao??a
i?e i?iaaaeaii? iaoaiaoe/iiai aenia?eiaioo.

Iaeiioeiiee i?aeo?ae aei noai?aiiy iiaeaeae aeaiaio?a aea? ciiao
canoiniaoaaoe ?o i?e aeine?aeaeaii? ??cieo nenoai aeaeo?ii?eaiaeo
iaoaeo?a?eieo o?ainii?oieo e?i?e.

O i’yoiio ?icae?e? aeeeaaeaii ?acoeueoaoe ??ciiiai?oieo aeine?aeaeaiue
nenoai aeaeo?ii?eaiae?a iaoaeo?a?eieo o?ainii?oieo e?i?e iaoiaeii
eiii’thoa?iiai neioethaaiiy c aeei?enoaiiyi no/anieo i?ia?aiieo
i?iaeoeo?a, iaoaiaoe/ia iniiaa noai?aieo iiaeaeae ?icaeyiooa a
iiia?aaeiueiio ?icae?e?.

Iienaia i?ia?aiia caaacia/aiiy aeey aeine?aeaeaiiy aeeiai?ee nenoai
?ieueaaiaiaeo aeaeaoi?a, ui aeeaeyoueny a?ae ia?aoai?thaa/?a oeio PWM;
e?i?? aenieiiiiaioieo aeaeaoi?a, ui aeeaeyoueny a?ae ia?aoai?thaa/a oeio
PWM; ?ieueaaiaiaeo aeaeaoi?a, ui aeeaeyoueny a?ae ia?aoai?thaa/?a oeio
DTC. Ie?aii ?icaeyaeathoueny aeeiai?/i? ?aaeeie ?ieueaaiaiaiai
aeaeo?ii?eaiaea c a?aooaaiiyi aeeiai?/ieo ia?aiao??a.

Aeey e?i?? ?ieueaaiaiaeo aeaeaoi?a aeei?enoaii iiaeae? oaeeo aeaiaio?a:
a?iiey?iiai ia?aoai?thaa/a oeio PWM (iiaeeeaa aeei?enoaiiy
iaeiiiiey?iiai ia?aoai?thaa/a oeio PWM oa ?aeaaeueiiai neioni?aeaeueiiai
ia?aoai?thaa/a); ei?ioeicaieiaiiai aneio?iiiiai aeaeaoia a eii?aeeiaoieo
inyo ((, (); I? — ?aaoeyoi?a c iaiaaeaiiyi; iaaaioaaeaiiy aeaeaoia.

?acoeueoaoe aeine?aeaeaiue ?icae?eaii ia aea? a?oie: 1) aeaeaoi
iaaaioaaeaiee iino?eiei iiiaioii; 2) aeaeaoi iaaaioaaeaiee iiiaioii c?
no?eaeiiiae?aiei oa?aeoa?ii ci?ie ? a iueiio ? ?iioeuen iiiaioo,
ni?e/eiaiee aenoeaio?e/i?noth aaee?a.

.

Ii??aiyiiy c ii?iaoeaieie oaaeeoeyie c oi/ee ci?o yeino? iiaa?oiiue
nioae aeyaeee, ui io?eiaia cia/aiiy iaeaaeeoue aei a?oie aeiionoeieo
ia??aiii??iinoae eooiaeo i?enei?aiue. E??i oiai, o oe?e a?oi?
aeine?aeaeaiue i?iaiae?ciaaii aieea ?ica?aeiino? ia?aiao??a aeaeaoi?a,
cie?aia aeoeaiiai iii?o, ia ??cieoeth oaeaeeinoae. I?e/eiith ??cieoe?
iii??a ?: a?aeoeeaiiy i?e aeeiiaii? ii?yaeeo 2-3 %; ci?ia iii?o a
?acoeueoao? c?inoaiiy oaiia?aoo?e, ui a?aeaoaa?oueny a oiiaao ?iaioe
iaoaeo?a?eieo o?ainii?oieo e?i?e (iaeneiaeueii iiaeeeaee i?e??no
oaiia?aoo?e noaiiaeoue 30oC, ui ni?e/eith? ci?io iii?o ia 12%).

Ae?oaa a?oia aeine?aeaeaiue iaaaaeaia aeey iaaaioaaeaiiy, cia?aaeaiiai
ia ?en. 15.

?en. 15. Oa?aeoa? iiiaioa iaaaioaaeaiiy

Oaeaee?noue iaa?oaiiy aeaeaoi?a i?e aeeaeaii? a?ae iaeiiiiey?iiai
ia?aoai?thaa/a oeio PWM ?ethno?o? ?en. 16. O aeena?oaoe?? iaaaaeai?
?ic?aooiee aeey aeaeaoi?a, ui aeeaeyoueny a?ae a?iiey?iiai
ia?aoai?thaa/a PWM.

Aeey e?i?? aenieiiiiaioieo aeaeaoi?a iienaii noaoe/i? oa aeeiai?/i?
oa?aeoa?enoeee. Ei?aeoe?y caeii?a ea?oaaiiy U-f aeey aenieiiiiaioiiai
aeaeaoia aea? ciiao io?eiaoe n?iaenoai oa?aeoa?enoee, ui aeoiaeyoue c
iaei??? oi/ee, yea eaaeeoue ia in? iiiaioo, ui aea? ciiao ca?eueoeoe
ae?aiacii ?aaoethaaiiy oaeaeeino?. Aeiiiaiaiiyi noaoe/ieo oa?aeoa?enoee
? a?ao?ee iiaaae?iee no?oio oa oaeaeeino? aenieiiiiaioiiai aeaeaoia i?e
aeeaeaii? a?ae ia?aoai?thaa/a oeio PWM a ?aaeeiao no?eaeiiiae?aii?
ci?ie iaaaioaaeaiiy. Ia ?en. 17 i?i?ethno?iaaii iiiaio iaaaioaaeaiiy oa
aeaeo?iiaai?oiee iiiaio, a ia ?en. 18 — oaeaee?noue aeaeaoia.

?en. 16. Oaeaeeino? iaa?oaiiy aeaeaoi?a i?e aeeaeaii? a?ae
iaeiiiiey?iiai ia?aoai?thaa/a PWM

?en. 17. Aeaeo?iiaai?oiee iiiaio oa iiiaio iaaaioaaeaiiy

aeaeaoia 3SHK 224a i?e f = 40Aoe i kw = 1

?en. 18. Caeaaei?noue ci?ie oaeaeeino? aenieiiiiaioiiai aeaeaoia i?e
f=40 Aoe i kw=1.0

Aeey e?i?? ?ieueaaiaiaeo aeaeaoi?a i?e aeeaeaii? a?ae ia?aoai?thaa/a
oeio DTC i?iaaaeaii aeine?aeaeaiiy ioneo aei caaeaii? /anoioe i?e
caaeaiiio iiiaio? iaaaioaaeaiiy; aaeueioaaiiy iioieii oa eiai
i?aeo?eioaaiiy noaeei; ?aaa?n aeaeaoi?a ci?iith aaeoi??a iai?oae oa
iioieo. I?e i?iaaaeaii? aeine?aeaeaiue a?aoiaaii: iaoai?/iee ?aaeoeoi?
c ia?aaeaaaeueiei /eneii 1,33; aea? /anoioe ia?aeeth/aiue aeaiaio?a
ia?aoai?thaa/a DTC, ui aei??aiththoue 5 eAoe i 10 eAoe. Ciaioaiiy
/anoioe ia?aeeth/aiue a?ae 40 eAoe iia’ycaia c aeei?enoaiiyi iai’yo?
eiii’thoa?a. ?acoeueoaoe ?ic?aooie?a iiaeaii o aeaeyae? /aniaeo
caeaaeiinoae oa aiaeia?ao?a. sse i?eeeaae, ia ?en. 19 cia?aaeaii ci?io
iioieo ?ieueaaiaiaiai aeaeaoia a ?aaeei? ?aaa?no. Oeueiio aiaeia?aoo
iioieo a?aeiia?aeathoue /ania? caeaaeiino? no?oi?a noaoi?a, cia?aaeai?
ia ?en. 20.

?en. 19. I?inoi?iaa ci?ia iioieo ?ieueaaiaiaiai aeaeaoia i?e aeeaeaii?
a?ae ia?aoai?thaa/a DTC a ?aaeei? ?aaa?no

?en. 20. Neeaaeia? no?oio I( i I( ?ieueaaiaiaiai aeaeaoia i?e aeeaeaii?
a?ae ia?aoai?thaa/a DTC a ?aaeei? ?aaa?no

?en. 21. A?ao?ee oaeaeeinoae iaa?oaiiy i?oaeiiai aaeo oa aaeea
?ieueaaiaa i?e aeeaeaii? a?ae ia?aoai?thaa/a PWM ? f=25 Aoe

?en. 22. E?i?ei? oaeaeeino? eenoa oa aaeea [i/n]

Aeeiai?/i? ?aaeeie ?ieueaaiaiaiai aeaeo?ii?eaiaeo i?e a?aooaaii?
iaoai?/ieo ia?aiao??a ?ethno?othoue ?en. 21 oa 22, c yeeo aeaeii, ui
oaeaeeino? aaea aeaeaoia, aaeea ? o?ainii?oiaaiiai eenoa ia ?
iaeiaeiaeie, a caeaaeaoue a?ae eooa ne?o/aiiy i?oaeiiai aaeo oa eiacaiiy
eenoa. Aeine?aeaeaiiy aeeiai?ee ?ieueaaiaiaiai aeaeo?ii?eaiaeo c
a?aooaaiiyi iaoai?/ieo ia?aiao??a ia? aaaeeeaa cia/aiiy ia aoai? ye
i?iaeooaaiiy, oae ? aenieoaoaoe??. Oea iia’ycaia ye c aeai?ii
a?aeiia?aeieo iaoa??ae?a aeey iaoai?/ii? /anoeie, oae ? c
iaeaaiaeaeaiiyi ia?aiao??a nenoaie ea?oaaiiy.

O oinoiio ?icae?e? iienaii ?acoeueoaoe aenia?eiaioaeueieo aeine?aeaeaiue
a?oiiaeo /anoioii-ea?iaaieo aeaeo?ii?eaiae?a ?ieueaaia?a, cae?eniaieo ia
ai?iaaaeaeaieo e?i?yo iaoaeo?a?eiiai eiia?iaoo «*ainoioiaa», Iieueua.

Aeine?aeaeaiiy i?iaiaeeeenue ia oaeeo aoaiao oaoiieia?/iiai i?ioeano:
o?ainii?ooaaiiy neya?a; o?ainii?ooaaiiy oianoeo eeno?a; o?ainii?ooaaiiy
o?oa.

Iiaeai? a ?iaio? oioia?ao?? aeaiiino?othoue o?aaiaioe ?ieueaaiaiaeo
e?i?e, ia yeeo ai?iaaaeaeai? cai?iaeoiaai? nenoaie iioi?aaeoeoi??a, ui
aeeaeyoueny a?ae ia?aoai?thaa/?a /anoioe.

?acoeueoaoe aenia?eiaioaeueieo aeine?aeaeaiue i?aeoaa?aeeee
aaeaeaaoi?noue iaoaiaoe/ieo iiaeaeae ? aeinoia??i?noue ?acoeueoao?a,
io?eiaieo iaoiaeii eiii’thoa?iiai neioethaaiiy.

E??i ?acoeueoao?a aenia?eiaioaeueieo aeine?aeaeaiue o oeueiio ?icae?e?
iienaii noaio anoeiaoi?a iiiaioo oa iioieo aeaeaoia, aaoaeiaaio a
nenoaio aaoiiaoe/iiai ea?oaaiiy. Ao?aeiith ?ioi?iaoe??th anoeiaoi?a ?
aei??thaai? cia/aiiy iai?oae oa no?oio noaoi?a aneio?iiiiai aeaeaoia.
Aeey i?iaaaeaiiy aei??thaaiue aeei?enoaii ea?oo PLC-818 oa i?ia?aiia
caaacia/aiiy PC STREAMER. sse aeaaa/?, aaeeoi aaeio?iii? ia?aoai?thaa/?
LEM oeio LA25-NP aeey no?oio i LV25-P aeey iai?oae. Oe? ia?aoai?thaa/?
oaeiae caaacia/othoue aaeueaai?/io ?ica’yceo e?e aeeaeaiiy oa ea?oaaiiy.

O aeiaeaoeao i?aaenoaaeaii eii?? aeieoiaio?a, ui i?aeoaa?aeaeothoue
ai?iaaaeaeaiiy io?eiaieo ?acoeueoao?a ia iaoaeo?a?eieo i?aei?e?inoaao
Iieueu? oa iaaaaeaii oaenoe i?ia?ai, aeei?enoaieo i?e i?iaaaeaii?
aeine?aeaeaiue.

AENIIAEE

O aeena?oaoe?? ia iniia? a?aeiieo, a oiio /ene? io?eiaieo aaoi?ii
?acoeueoao?a aeine?aeaeaiue, i?iaeooaaiiy oa aenieoaoaoe?? i?eaiae?a
ci?iiiai no?oio, iaoiae?a iaoaiaoe/iiai iieno aeaeo?iiaoai?/ieo
ia’?eo?a, /eneiaeo iaoiae?a ?ica’ycoaaiiy aeeoa?aioe?aeueieo ??aiyiue,
iiaeo i?aeoiae?a a aeai?eoi?caoe?? ? c a?aooaaiiyi iiaeeeainoae no/anieo
aeaeo?iiieo cania?a ?ic?iaeaii eiiieaeniee iaoiae aeine?aeaeaiiy
aeeiai?ee /anoioii-ea?iaaieo aneio?iiieo i?eaiae?a iaoaeo?a?eieo
o?ainii?oieo e?i?e, yeee aea? ciiao cae?enithaaoe aiae?c i?ioean?a ?
iioei?coaaoe ia?aiao?e aeaeo?ii?eaiaeo a iai?yieo caaacia/aiiy
iaiao?aeieo oaoiieia?/ieo aeiia.

Io?eiai? oa?aeoa?enoeee ? ia?aiao?e o?ainii?oieo e?i?e aeathoue
iiaeeea?noue i?iaiaeeoe iaoaiaoe/iee aenia?eiaio c o?aooaaiiyi
iaoai?/ieo ca’yce?a a aeaeo?ii?eaiae?, ui aeiiiiaaa? iioei?coaaoe
nenoaio ea?oaaiiy ? ?ic?iaeoe nenoaio caoenoo ia aoai? i?iaeooaaiiy
iaeaaeiaiiy, aea/aoe aca?ii? aieeae, ui aeieeathoue o aeeiai?/ieo
?aaeeiao i?ae iaoai?/iith /anoeiith o?ainii?oieo e?i?e, neeiaith
/anoeiith aeaeo?ii?eaiaeo oa neaiaeaie nenoaie ea?oaaiiy.

Noi?ioeueiaai? e?eoa??? yeino? aeey i?eaiae?a iaoaeo?a?eieo o?ainii?oieo
e?i?e a?aoiaothoue ia?aiao?e oaoiieia?/iiai i?ioeano, ye? ? aaaeeeaei
iieacieeii aeey ?aaoethaaiiy oaeaeeino? oa iiiaioo ? iiaeooue
aeei?enoiaoaaoenue a nenoai? ea?oaaiiy.

Aiae?c no/anieo eiino?oeoe?e ea?iaaieo aeaeo?ii?eaiae?a ci?iiiai no?oio,
ai?iaaaeaeaieo o ?ieueaaiaiaeo e?i?yo, ioiieth? oe?ieee niaeo? oaoi?/ieo
??oaiue: eiino?oeoeaieo (iioi?aaeoeoi?e, aaciina?aaei? c’?aeiaiiy aaeea
c aneio?iiiei aeaeaoiii, niaoe?aeuei? eiino?oeoe?? aeaeaoi?a); noaiieo
(canoinoaaiiy iai?ai?ia?aeieeiaeo ia?aoai?thaa/?a ia aac? ?iaa?oi??a
iai?oae oeio PWM oa DTC, niiniao i?ae’?aeiaiiy aeaeaoi?a aei aeaea?aea
aeeaeaiiy) oa ?ioi?iaoe?eieo (aeeth/aiiy aaeaioeaieo iaoaiaoe/ieo
iiaeaeae a nenoaio ea?oaaiiy) ? ? ocaaaeueiaiiyi uiaei aeai?o aeaiaio?a
? i?iaeooaaiiy aeaeo?ii?eaiae?a iaoaeo?a?eieo o?ainii?oieo e?i?e ia aac?
iaoei ci?iiiai no?oio, iai?ai?ia?aeieeiaeo ia?aoai?thaa/?a /anoioe ?
oeeo?iaeo nenoai ea?oaaiiy ye iiaiai eeano aeaeo?ii?eaiae?a ci?iiiai
no?oio.

Cae?eniaia ?aeaioeo?eaoe?y aeaeo?iiaoai?/ieo ia?aiao??a aneio?iiieo
aeaeaoi?a, ye? aeei?enoiaothoueny a i?eaiaeao ?ieueaaia?a, ? nenoaie
“o?ainii?oiaaiee iaoa??ae — aaeie — aae aeaeaoia”, — oea aeo?aeia
?ioi?iaoe?y aeey i?iaaaeaiiy iaoaiaoe/ieo aenia?eiaio?a ia iiaeaeyo, yea
caaacia/o? ?o aaeaeaaoi?noue, ine?eueee a?aeia?aaea? an? aecia/aeuei?
o?ce/i? oaeoi?e: iaoai?/i? oa aeaeo?iiaoai?/i? ca’ycee, eiino?oeoe?th
ei?ioeicaieiooeo iaiioie, iane/aiiy iaai?oii?iaiaeo.

Aeei?enoaiiy no/anieo niinia?a aeai?eoi?caoe?? oa iiaeeeainoae iaeaoo
MATLAB — SIMULINK aeaei ciiao noai?eoe iaaeyaeio ae?aeiaiao nenoaio aeey
iiaeaethaaiiy neeaaeieo aeaeo?ii?eaiae?a iaoaeo?a?eieo o?ainii?oieo
e?i?e, neeaaeiaeie aeaiaioaie yei? ? ?ic?iaeai? aaoi?ii iiaeae?:
a?oiiaiai aneio?iiiiai aeaeo?ii?eaiaeo; aenieiiiiaioiiai aeaeaoia;
ia?aoai?thaa/?a /anoioe c ?iaa?oi?aie iai?oae oeio PWM ? DTC; iaoai?/ieo
c’?aeiaiue a ?ieueaaiaiaeo e?i?yo.

I?aeoiaee, aeei?enoai? i?e noai?ai? iacaaieo a i.6 iaoaiaoe/ieo
iiaeaeae, ? caaaeueieie ? iiaeooue aeei?enoiaoaaoenue i?e aeine?aeaeaii?
?ioeo oei?a aeaeo?ii?eaiae?a.

?ic?iaeai? i?ia?aii? caniae aeathoue ciiao iaoiaeii eiii’thoa?iiai
neioethaaiiy aea/aoe aeeiai?/i? i?ioeane, iioei?coaaoe ia?aiao?e ?
oa?aeoa?enoeee aeaeo?ii?eaiaeo, aeyaeyoe aieea ie?aieo ia?aiao??a ia
i?ioeane ? ioe?ithaaoe aca?ii? aieeae a nenoai?.

Iienai? a ?icae?e? 6 ?acoeueoaoe aeine?aeaeaiue ?icoe?ththoue oai??th
aeaeo?ii?eaiaeo a /anoei? aiae?co yaeu a aneio?iiieo aeaeaoiao
(iaoaeo?a?eieo oa aenieiiiiaioieo) ea?iaaieo ?iaa?oi?ii iai?oae oeio PWM
/e DTC, ye? aeieeathoue a ?acoeueoao? ?o ni?eueii? ?iaioe a
oaoiieia?/iiio i?ioean? o?ainii?ooaaiiy iaoaeo?a?eieo ae?ia?a.

Aenia?eiaioaeuei? aeine?aeaeaiiy ia ?aaeueieo aeaeo?ii?eaiaeao
i?aeoaa?aeeee i?aaeeuei?noue aeo?aeieo iieiaeaiue, ocaaaeueiaiue,
aaeaeaaoi?noue iaoaiaoe/ieo iiaeaeae ? oai?aoe/ieo aeniiae?a.

?ic?iaeai? a aeena?oaoe?? iaoeiai- iaa?oioiaai? oaoi?/i? ??oaiiy
ai?iaaaeaeai? ia i?aei?e?inoaao Iieueu? ? iiaeooue aooe ?aeiiaiaeiaai?
aei ai?iaaaeaeaiiy ia oaeeo caaiaeao ?ioeo aea?aeaa.

Iniiai? iieiaeaiiy aeena?oaoe?? aena?oeaii a ?iaioao:

E. ssaaea. Iiaeaeue ia?aoao?thaa/a DTC (Direct Torque Control) i?e
aeei?enoaie? i?ia?aie MATLAB-SIMULINK // A?niee AeO „Euea?anueea
iie?oaoi?ea”. -1997. -? 334. -N. 150-158.

E. ssaaea. Oi?ioaaiiy e?eoa??y yeino? a?oiiaiai ?ieueaaiaiaiai
aeaeo?ii?eaiaeo ci?iiiai no?oio // A?niee AeO „Euea?anueea iie?oaoi?ea”.
-1997. -?334. -N. 148-150.

E. ssaaea. Oai?aoe/i? aniaeoe ?ic?aooieo ia?aiao??a iaaaioaaeaiue
?ieueaaiaiaiai aeaeo?ii?eaiaeo // A?niee AeO „Euea?anueea iie?oaoi?ea”.
-1997. -? 340.

E. ssaaea. O?aaiaiey a oaciuo eii?aeeiaoao neeiaie noaiu aneio?iiiiai
yeaeo?ii?eaiaea n i?aia?aciaaoaeai /anoiou — Direct Torque Control //
Oai?aoe/ia aeaeo?ioaoi?ea. -Euea?a: Na?o. -1998. -? 54. C. 139-143.

ssaaea K. Iiaeaeue ?ieueaaiaiaiai yeaeo?ii?eaiaea n eiaa?oi?ii DTC //
Aanoiee Oa?ueeianeiai oaoie/aneiai oieaa?neoaoa. «I?iaeaiu
aaoiiaoece?iaaiiiai yeaeo?ii?eaiaea». -1998. -Niaoe. aeione. C. 254-255.

Jagiela K. Matrix-Logical Algorithm Controlling the Operation of the
Thyristor Voltage Inverter // Electric Machines and Power Systems. -Vol.
10. — Kentucky (USA). -?p. 15 — 25.

Jagiela K. Macierzowy algorytm pracy tyrystorowego falownika
napieciowego // ZN AGH «Elektryfikacja i Mechanizacja Gornictwa i
Hutnictwa». -Krakow. -1978. -? 100. -S. 27-33.

Jagiela K. Algebraical model of thyristor converter ac to ac//Modelling,
Simulation & Control. -Vol.3. -AMSE Press. (France). -1985. -No2. P.
51-64.

Jagiela K. Analiza stabilnosci ukladu napedowego falownik tyrystorowy —
silnik asynchroniczny w oparciu o druga metode Lapunowa // ZN WSI Opole,
Elektryka. -1980. -Nr 8. S. 59-63.

Jagiela K., Branicki R. Model algebraiczny przeksztaltnika tyrystorowego
// ZN WSI Opole, Elektryka. -1980. -Nr 9. S. 75-84.

Jagiela K. Analogowo-rzeczywisty model przeksztaltnika tyrystorowego
typu 6T // Pomiary, Automatyka, Kontrola. -1984. -Nr 2. S. 47-49.

Jagiela K. Uklady sterowania trojfazowego mostkow tyrystorowych //
Wiadomosci Elektrotechniczne. -1981. -Nr 17/18. S. 391-394.

Jagiela K. Niaoeeaeece?iaaiiua nenoaiu yeaeo?ii?eaiaeia aeey
iaoaeeo?ae/aneeo ?ieueaaiaia // Yeaeo?ioaoieea. -1995. -? 9. N. 41-42.

Rusek A., Gasiorski A., Jagiela K., Roman A., Lis M. Wplyw wypierania
pradu w pretach wirnika na charakterystyke mechaniczna indukcyjnego
silnika samotokowego // Wiadomosci Elektrotechniczne. -1995. -Nr. 4. -S.
141 — 143.

Rusek A., Roman A., Jagiela K., Lis M., Flasza J., Slosarczyk K.,
Wawrzyszkiewicz J. Sily elektrodynamiczne dzialajace na prety wirnika
silnikow indukcyjnych samotokowych // Przeglad Elektrotechniczny. -1997.
-R.LXXIII. S. 232 — 234.

Patent RP nr P-286903. Uklad napedowy samotoku / Rusek A., Jagiela K.,
Rak J., Durlik B., Wegrzyn A., Pohorecki W. -1990.

Rusek A., Gasiorski A., Jagiela K., Roman A., Lis M. Influence of skin
effect on mechanical charakteristics of prototypical induction roller
table motor // AMSE Conf. -Brno ( Czech). -1995. -P.108-115.

Jagiela K. Le facteur de deplacement d’un courant du moteur asynchrone
profondement encoche alimente par l’ onduleur thyristorique
voltmetrique. // 1-st European Conference on POWER ELECTRONICS and
APLICATIONS. -Vol. 2. -EPE Brusseles. -1985. ?. 381 — 387.

Jagiela K. The Method of Harmonics Used for Calculating Skin Effect
Coefficient in the Deep-Slot Motor by a Thyristor Volta ge Inverter //
Electric Energy Conference EECON. -Adelaide. -1987. Vol. 2. P. 128-134.

Jagiela K., Rak J. Problems of co-operation roll leveller with
frequentative electromotion of a rollway fixed at plate mill // The
2-nd International Conference on Electrical Drives ICED’ 88. — Brasov
(Romania). -1988. Vol. 5. -P. E.3.4.1- E.3.4.11.

Jagiela K., Sorkowski M. Simulating observer of phase in Asynchronous
thyristor groupe drive // 4’th  European Conference on Power
Electronics and Applications. -Vol. 3. -Firenze. -1991. -P. 3-583 —
3-588.

Rusek A., Roman A., Jagiela K., Lis M., Flasza J. Possibilites of
forming mechanical characteristics of a roller table motor using typical
materials for rotor bars // Inter. Confer. on Electrical Drives and
Power Electronics EDPE’96. -Vol.2. -SLOVAKIA. -1996. -P. 433 — 435.

Rusek A., Roman A., Gasiorski A., Jagiela K., Lis M. Resistance and
reactance of rotor bars of roller table motor for typical materials used
for rotor bars // Inter. Confer. on Electrical Drives and Power
Electronics EDPE’96. -Vol.2. -SLOVAKIA. -1996. -P. 430 — 432.

Rusek A., Gasiorski A., Jagiela K., Roman A., Lis M. Impact of
freguency on parameters of rotors bars in prototypical induction roller
table motors // AMSE — Inter. Confer. Information and Systems Method
Applied to Engineering Problems. -1995. -P.187-196.

Jagiela K. Parametry rozruchowe tyrystorowego ukladu napedowego z
silnikiem asynchronicznym glebokozlobkowym // Mater. Konf. „Metody
Komputerowe w Automatyce i Elektrotechnice”. — T. 1. -S. 111-116.

ssaaea K., ?ae E. Eiiithoa?iay nenoaia aeey eiiieaeniiai oi?aaeaiey
?aaeoeaiie iiuiinoth a naoe ieoathuae eenoii?ieaoiue oeao // Na. O?oaeia
III Iaaeaeoia?. iao/iie eiio. „Yooaeoeaiinoue e ea/anoai
yeaeo?iniaaaeaiey i?iiuoeaiiuo i?aaei?eyoee”. — Ia??oiieue (Oe?a?ia)
-1994. C. 120-124.

ssaaea K. Oi?aaeaiea /anoioie iiiaioiiai ?ieueaaiaiaiai aeaeaaoaey //
III-y Iaaeaeoia?. eiioa?aioeey „Yeaeo?ioaoieea e yeaeo?ioaoiieiaee”.
-Iineaa. -1998. C. 175-178.

Koncepcje modernizacji napedow samotokow WBG Huty „Czestochowa” /
Jagiela K., Rak J., Rusek A., Bielawski J., Sorkowski M. // Mat. Sem.
N-T „Elektrotechnika Hutnicza”. — 1994. S. 55-65.

Napedy samotokow w liniach transportowych COS i API z zastosowaniem
przemiennikow czestotliwosci PWM / Jagiela K., Rusek A., Rak J. Glowacki
M., Skowron B. // Mat. Sem. N-T ”Elektrotechnika Hutnicza”. -1994. S.
3-13.

ssaaea K., ?onae A. ?ac?aaioea e aiaae?aiea yia?ainaaaathueo i?eaiaeiuo
nenoai a Iieueneie iaoaeeo?ae/aneie e iaoeiino?ieoaeueiie i?iiuoeaiiinoe
// II Iaaeaeoia?. Eiioe?. ii yeaeo?iiaoaieea e yeaeo?ioaoiieiaee.
-*anoue II. — E?ui. -1996. N. 28.

Jagiela K., Rusek A., Rak J. Parametry momentowego silnika samotokowego
zasilanego z przemiennika czestotliwosci // I Krajowa Konferencja
„Postep w Elektrotechnice Stosowanej PES-1”. -Politechnika Warszawska.
— 1997. S. 37-42.

Rusek A., Gasiorski A., Jagiela K., Roman A., Lis M. Porownanie
rezystancji i reaktancji pretow wirnika silnika samotokowego
SSP/5,5-1000 wykonanych z mosiadzu M63 i aluminium // Krajowa
Konferencja „Hutnicze Napedy Elektryczne HNE’95”. -1995.

Eaceie? ssaaea. *anoioii-ea?iaaiee aneio?iiiee aeaeo?ii?ea?ae
iaoaeo?a?eieo o?ainii?oieo e?i?e. — ?oeiien.

Aeena?oaoe?y ia caeiaoooy iaoeiaiai nooiaiy aeieoi?a oaoi?/ieo iaoe ca
niaoe?aeuei?noth 05.09.03 — aeaeo?ioaoi?/i? eiiieaene oa nenoaie.
Aea?aeaaiee oi?aa?neoao «Euea?anueea iie?oaoi?ea». Euea?a, 1998.

O aeena?oaoe?? ?ic?iaeaii iaoiae aeine?aeaeaiiy aeeiai?ee
/anoioii-ea?iaaieo aaaaoiiaoeiieo aneio?iiieo aeaeo?ii?eaiae?a ia iniia?
/eneiaeo iaoaiaoe/ieo iiaeaeae, ?aae?ciaaieo o i?ia?aiiiio na?aaeiaeu?
MATLAB-SIMULINK, ? eiai canoinoaaiiy aei aiae?co e iioei?caoe?? a?oiiaeo
aeaeo?ii?eaiae?a iaoaeo?a?eieo o?ainii?oieo e?i?e. I?iaiae?ciaaii
iaoai?/i? aca?iiae?? iaoaeo?a?eieo o?ainii?oieo e?i?e ye iaaaioaaeaiiy
aeey aeaeo?ii?eaiaeo. Aeaii iaoaiaoe/iee iien ?ieueaaiaiaeo e?i?e c
a?aooaaiiyi i?oaeiino? oa oa?oy. Iienaii eiino?oeoe?? oa noaie no/anieo
/anoioii-ea?iaaieo aneio?iiieo aeaeo?ii?eaiae?a. Aeeiiaii eiiieaen
aeine?aeaeaiue, iaiao?aeieo aeey i?iaeooaaiiy iiaiai eeano
aeaeo?ii?eaiae?a iaoaeo?a?eieo o?ainii?oieo e?i?e. I?iaaaeaii
aenia?eiaioaeuei? aeine?aeaeaiiy aeey ioe?iee aaeaeaaoiino? iaoaiaoe/ieo
iiaeaeae ? ia?aa??ee aeinoia??iino? c?iaeaieo aeniiae?a. Iienaii
oaoi?/i? ??oaiiy, ye? aaeineiiaeththoue ai?iaaaeaeai? a iaoaeo?a??
/anoioii-ea?iaai? aneio?iii? aeaeo?ii?eaiaee.

Eeth/ia? neiaa: iaoaeo?a?eia o?ainii?oia e?i?y, a?oiiaee aeaeo?ii?ea?ae,
ia?aoai?thaa/ /anoioe, aneio?iiiee aeaeaoi, iioi?aaeoeoi?, nenoaia
ea?oaaiiy, anoeiaoi?, e?eoa??e yeino?, iaoaiaoe/ia iiaeaeue, i?ia?aiia
caaacia/aiiy.

Eaceie? ssaaea. *anoioii-oi?aaeyaiue aneio?iiiue yeaeo?ii?eaiae
iaoaeeo?ae/aneeo o?ainii?oiuo eeiee. — ?oeiienue.

Aeenna?oaoeey ia nieneaiea o/aiie noaiaie aeieoi?a oaoie/aneeo iaoe ii
niaoeeaeueiinoe 05.09.03 — yeaeo?ioaoie/aneea eiiieaenu e nenoaiu. Ain.
oieaa?neoao «Euea?anueea iie?oaoi?ea». Eueaia, 1998.

A aeenna?oaoeee ?ac?aaioai iaoiae enneaaeiaaiey aeeiaieee
/anoioii-oi?aaeyaiuo iiiaiiaoeiieo aneio?iiiuo yeaeo?ii?eaiaeia ia aaca
/eneaiiuo iaoaiaoe/aneeo iiaeaeae, ?aaeece?iaaiiuo a i?ia?aiiie n?aaea
MATLAB-SIMULINK, e aai i?eiaiaiea e aiaeeco e iioeiecaoeee a?oiiiauo
yeaeo?ii?eaiaeia iaoaeeo?ae/aneeo o?ainii?oiuo eeiee. I?iaiaeece?iaaiu
iaoaie/aneea acaeiiaeaenoaey iaoaeeo?ae/aneeo o?ainii?oiuo eeiee eae
iaa?ocee aeey yeaeo?ii?eaiaea. Aeaii iaoaiaoe/aneia iienaiea
?ieueaaiaiauo eeiee n o/aoii oi?oainoe e o?aiey. Iienaiu eiino?oeoeee e
noaiu nia?aiaiiuo /anoioii-oi?aaeyaiuo aneio?iiiuo yeaeo?ii?eaiaeia.
Auiieiai eiiieaen enneaaeiaaiee, iaiaoiaeeiuo aeey i?iaeoe?iaaiey iiaiai
eeanna yeaeo?ii?eaiaeia iaoaeeo?ae/aneeo o?ainii?oiuo eeiee. I?iaaaeaiu
yenia?eiaioaeueiua enneaaeiaaiey aeey ioeaiee aaeaeaaoiinoe
iaoaiaoe/aneeo iiaeaeae e i?iaa?ee aeinoiaa?iinoe naeaeaiiuo auaiaeia.
Iienaiu oaoie/aneea ?aoaiey, eioi?ua oniaa?oainoaotho aiaae?aiiua a
iaoaeeo?aee /anoioii-oi?aaeyaiua aneio?iiiua yeaeo?ii?eaiaea.

Eeth/aaua neiaa: iaoaeeo?ae/aneay o?ainii?oiay eeiey, a?oiiiaie
yeaeo?ii?eaiae, i?aia?aciaaoaeue /anoiou, aneio?iiiue aeaeaaoaeue,
iioi?aaeoeoi?, nenoaia oi?aaeaiey, ynoeiaoi?, e?eoa?ee ea/anoaa,
iaoaiaoe/aneay iiaeaeue, i?ia?aiiia iaania/aiea.

Kazimir Jagiela. Frequency-controlled electric drives of metallurgical
transports line. — Manuscript.

Thesis for a degree of the doctor of technical science on the speciality
05.09.03 — electro-technical complexes and systems. State University
«Lviv Polytechnic». Lviv, 1998.

The thesis is dedicate the problem of development the method that
permits to research the dynamic behavior of frequency-controlled
multi-motors electric drives, based on mathematical models realized in
the program Matlab-Simulink, and its application to analyses and
optimization of metallurgical transports lines electric drives. The
mechanical interactions of metallurgical transports’ lines as the
electric drives loads have been analyzed. Given the mathematical
description of metallurgical transports line that considers the
elasticity and friction. Construction and schemes of the modern
frequency controlled induction drives have been described. The
investigations, necessary for design of the new type of metallurgical
transports line electric drives, have been executed. The experimental
researches that estimate the mathematical models adequate and verify
drawing conclusion reliability have been carried out. The technical
solution, that improves the frequency controlled induction drives,
inculcated in metallurgical industry, have been described.

Key words: metallurgical transports line, multidrives system, frequency
converter, induction motor, motoreductor, control system, estimator,
mathematical model, program.

PAGE

PAGE 26

Похожие записи