Детали машин
Тольяттинский политехнический институт
Кафедра «Детали машин»
Курсовой проект
по дисциплине
Детали машин
Руководитель: Журавлева В. В.
Студент: Анонимов С. С.
Группа: Т – 403
|
………«………»….…….2000 г.
Тольятти 2000 г.
Содержание
вариант 6.5.
1. Выбор электродвигателя и кинематический расчет привода. | 3 |
2. Расчет клиноременной передачи. | 6 |
3. Расчет двухступенчатого цилиндрического редуктора. | 8 |
4. Предварительный расчет валов | 12 |
5. Конструктивные размеры корпуса редуктора | 13 |
6. Определение реакций в подшипниках | 14 |
7. Проверочный расчет подшипников | 17 |
8. Проверочный расчет шпонок | 18 |
9. Уточненный расчет валов | 19 |
10. Смазка зубчатых зацеплений и подшипников | 23 |
1. Выбор электродвигателя и кинематический расчет привода.
Расчет требуемой мощности двигателя.
;
,
– КПД ременной передачи;
– КПД зубчатой косозубой передачи с цилиндрическими колесами;
– КПД подшипников качения. Тогда
.Расчет требуемой частоты вращения.
;
,
;
;
– передаточные числа. Тогда
.По таблице принимаем мощность двигателя Р = 5,5 кВт; частоту вращения 3000 об/мин. Синхронная частота вращения двигателя равна 2880 об/мин. Модель электродвигателя: 100L2.
Определение передаточных чисел.
Фактическое передаточное число привода:
.Передаточные числа редуктора:
;
;
; полученные значения округляем до стандартных:
;
.Расчет частот вращения.
;
;
;
;
;
;
;
.Расчет крутящих моментов.
;
;
;
.
I | II | III | |
18 | 33 | 126 | |
33 | 126 | 430 | |
2880 | 1440 | 360 | |
1440 | 360 | 100 | |
300 | 150 | 38 | |
150 | 38 | 11 | |
2 | 4,0 | 3,55 |
2. Расчет клиноременной передачи.
Выбираем сечение клинового ремня, предварительно определив угловую скорость и номинальный вращающий момент ведущего вала:
При таком значении вращающего момента принимаем сечение ремня типа А, минимальный диаметр
. Принимаем
.Определяем передаточное отношение i без учета скольжения
.Находим диаметр
ведомого шкива, приняв относительное скольжение ε = 0,02:
.Ближайшее стандартное значение
. Уточняем передаточное отношение i с учетом ε:
.Пересчитываем:
.Расхождение с заданным составляет 1,9%, что не превышает допустимого значения 3%.
Определяем межосевое расстояние а: его выбираем в интервале
принимаем близкое к среднему значение а = 400 мм.
Расчетная длина ремня:
.Ближайшее стандартное значение L = 1250 мм,
.
Вычисляем
и определяем новое значение а с учетом стандартной длины L:
Угол обхвата меньшего шкива
Скорость
По таблице определяем величину окружного усилия
, передаваемого клиновым ремнем:
на один ремень.
.Коэффициент, учитывающий влияние длины ремня:
.Коэффициент режима работы при заданных условиях
, тогда допускаемое окружное усилие на один ремень:
.Определяем окружное усилие:
.Расчетное число ремней:
.Определяем усилия в ременной передаче, приняв напряжение от предварительного натяжения
Предварительное натяжение каждой ветви ремня:
;рабочее натяжение ведущей ветви
;рабочее натяжение ведомой ветви
;усилие на валы
.Шкивы изготавливать из чугуна СЧ 15-32, шероховатость рабочих поверхностей
.3. Расчет двухступенчатого цилиндрического редуктора.
Для обеих ступеней принимаем:
Колесо: материал – сталь 40Х, термообработка – улучшение;
.Шестерня: материал – сталь 40Х, термообработка – улучшение;
.Передача реверсивная.
Для расчета принимаем:
,
.Коэффициент долговечности при длительной эксплуатации принимаем
; коэффициент запаса прочности
;
.Рассчитаем допускаемые контактные напряжения:
,
.
Рассчитаем допускаемые напряжения изгиба:
,
.
Коэффициент на форму зуба
; коэффициент нагрузки
; коэффициент ширины венцов
; коэффициент, учитывающий динамическую нагрузку, возникающую в зацеплении
; коэффициент, учитывающий распределение нагрузки между зубьями
Расчет третьей (тихоходной) ступени.
Межосевое расстояние:
,принимаем значение из стандартного ряда: а = 140 мм.
Нормальный модуль:
,принимаем среднее значение, соответствующее стандартному: m = 2 мм.
Принимаем предварительно угол наклона зубьев β = 15˚ и определяем числа зубьев шестерни и колеса:
Уточняем значение угла β:
.Основные размеры шестерни и колеса:
диаметры делительные:
;
,проверка:
.Диаметры вершин зубьев:
;
,диаметры впадин:
;
.Ширина колеса:
.Ширина шестерни:
.Окружная скорость колеса тихоходной ступени:
.При данной скорости назначаем 9-ю степень точности.
Коэффициент нагрузки для проверки контактных напряжений:
.Проверяем контактные напряжения:
,
;
.Проверяем изгибные напряжения:
,
.
.Силы, действующие в зацеплении тихоходной ступени:
окружная:
Определим тип используемых подшипников:
;следовательно, будем использовать радиально-упорные шарикоподшипники.
Расчет второй (быстроходной) ступени.
Межосевое расстояние равно 140 мм из условия соосности, значения всех коэффициентов, используемых в расчете третьей ступени справедливы при расчете данной ступени.
Принимаем угол наклона зубьев β = 12˚50΄19˝, а модуль m = 1,5 мм и определяем числа зубьев шестерни и колеса:
Основные размеры шестерни и колеса:
диаметры делительные:
;
,проверка:
.Диаметры вершин зубьев:
;
,диаметры впадин:
;
.Ширина колеса:
.Ширина шестерни:
.Окружная скорость колеса быстроходной ступени:
.При данной скорости назначаем 9-ю степень точности.
Коэффициент нагрузки для проверки контактных напряжений:
.Проверяем контактные напряжения:
,
;
.Проверяем изгибные напряжения:
,
.
.Силы, действующие в зацеплении быстроходной ступени:
окружная:
Определим тип используемых подшипников:
;следовательно, будем использовать радиально-упорные шарикоподшипники.
4. Предварительный расчет валов.
Расчетная формула:
Вал 1
Диаметр вала:
.Диаметр вала под колесо:
.Диаметр вала под подшипник:
.
Вал 2
Диаметр вала под колесо:
.Диаметр вала под подшипник:
Вал 3
Диаметр вала:
.Диаметр вала под колесо:
.Диаметр вала под подшипник:
.5. Конструктивные размеры корпуса редуктора.
Параметр | Расчетная формула и значение, мм |
Толщина стенки корпуса | |
Толщина стенки крышки | |
Толщина фланца корпуса | |
Толщина фланца крышки | |
Толщина основания корпуса без бобышки | |
Толщина ребер основания корпуса | |
Толщина ребер крышки | |
Диаметр фундаментных болтов | |
Диаметр болтов у подшипников | |
Диаметр болтов, соединяющих основание и крышку |
6. Определение реакций в подшипниках.
|
||||
|
проверка:
.
|
||||
|
проверка:
.
|
|
проверка:
.7. Проверочный расчет подшипников.
Подшипник № 36207, d = 35 мм.
.
; тогда Х = 1; У = 0;
.Долговечность:
.Подшипник № 36209, d = 45 мм.
.
; тогда Х = 1; У = 0;
.Долговечность:
.Подшипник № 36211, d = 55 мм.
.
; тогда Х = 1; У = 0;
.Долговечность:
.Все подшипники удовлетворяют условию долговечности.
8. Проверочный расчет шпонок.
Материал шпонок – сталь 45. Проверим шпонки под зубчатыми колесами и шкивом на срез и смятие.
.Условия прочности:
Шпонка под шкивом:
Шпонка под колесом быстроходной ступени:
Шпонка под колесом тихоходной ступени:
Все шпонки удовлетворяют условию прочности на срез и смятие.
9. Уточненный расчет валов.
Материал валов – сталь 40Х улучшенная,
. Определим коэффициенты запаса прочности в опасных сечениях.
Вал 1, Сечение 1
Результирующий изгибающий момент:
Моменты сопротивления сечения нетто:
Амплитуда номинальных напряжений изгиба:
.Амплитуда и среднее напряжение цикла касательных напряжений:
.По таблицам определим ряд коэффициентов:
.Определим коэффициенты запаса прочности:
Общий коэффициент запаса прочности:
.
Вал 1, Сечение 2
Результирующий изгибающий момент:
Моменты сопротивления сечения нетто:
Амплитуда номинальных напряжений изгиба:
.Амплитуда и среднее напряжение цикла касательных напряжений:
.По таблицам определим ряд коэффициентов:
.Определим коэффициенты запаса прочности:
Общий коэффициент запаса прочности:
.
Вал 2, Сечение 1
Результирующий изгибающий момент:
Моменты сопротивления сечения нетто:
Амплитуда номинальных напряжений изгиба:
.Амплитуда и среднее напряжение цикла касательных напряжений:
.По таблицам определим ряд коэффициентов:
.Определим коэффициенты запаса прочности:
Общий коэффициент запаса прочности:
.
Вал 2, Сечение 2
Результирующий изгибающий момент:
Моменты сопротивления сечения нетто:
Амплитуда номинальных напряжений изгиба:
.Амплитуда и среднее напряжение цикла касательных напряжений:
.По таблицам определим ряд коэффициентов:
.Определим коэффициенты запаса прочности:
Общий коэффициент запаса прочности:
.
Вал 3, Сечение 1
Результирующий изгибающий момент:
Моменты сопротивления сечения нетто:
Амплитуда номинальных напряжений изгиба:
.Амплитуда и среднее напряжение цикла касательных напряжений:
.По таблицам определим ряд коэффициентов:
.Определим коэффициенты запаса прочности:
Общий коэффициент запаса прочности:
.10. Смазка зубчатых зацеплений и подшипников.
Зацепления смазывают окунанием зубчатых колес в масло. Уровень масла должен обеспечивать погружение колес на высоту зуба. Объем масляной ванны равен 2,75 литра. Подшипники смазываются тем же маслом за счет разбрызгивания. Используемое масло марки И-100А.
Нашли опечатку? Выделите и нажмите CTRL+Enter