.

Пороги и методы фильтрации речевого сигнала в вейвлет области (реферат)

Язык: русский
Формат: реферат
Тип документа: Word Doc
1 431
Скачать документ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

“БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ”

 

кафедра Сетей и устройств телекоммуникаций

 

 

 

 

 

 

РЕФЕРАТ

На тему:

«Пороги и методы фильтрации речевого сигнала в вейвлет области»

 

 

 

 

 

 

 

 

 

 

 

 

 

 

МИНСК, 2008


Жесткий порог фильтрации речевого сигнала.

 

Жесткий порог фильтрации устанавливается для каждого уровня вейвлет разложения.

Данный порог реализуется следующим образом:

– на i-м уровне разложения вычисляется уровень порога по формуле

 

,                                                   (1)

 

где – значение вейвлет-отсчета с максимальной амплитудой; –количество ненулевых вейвлет-отсчетов.

В процентном соотношении данное выражение имеет вид

 

,                                                         (2)

 

где  – величина порога в процентах;

– поэлементное сравнение всех ненулевых элементов N-го уровня с заданным порогом  и обнуления всех отчетов, равных или меньше данного уровня.

Достоинства данного метода пороговой обработки:

– самая маленькая вычислительная сложность из рассмотренных методов.

Недостатки данного метода пороговой обработки:

– возможность полной потери полезного сигнала при высоком уровне

шума;

– возможность потери полезного сигнала также и при малом уровне шума.

 

Блок схема алгоритма фильтрации с жестким порогом представлена на рис. 1.

Рис. 1. Блок схема алгоритма фильтрации с жестким порогом

 

На рис. 2 слева представлены графики двух уровней вейвлет-разложения речевого сигнала (первого и второго детализирующего уровня и второго аппроксимационного уровня), а справа – графики вейлет-коэффициентов после пороговой обработки.

 

Рис. 2 Графики двух уровней вейвлет-разложения речевого сигнала и вейлет-коэффициентов после пороговой обработки

 

Гибкий порог фильтрации речевого сигнала.

 

При данном виде фильтрации для задания порога используется количественная оценка вейвлет-коэффициентов на каждом уровне разложения.

Данный метод заключается в следующем:

– на i-м уровне разложения вычисляется количество ненулевых вейвлет-коэффициентов ;

– вычисляется количество  обнуляемых вейвлет-коэффициентов на i-м уровне по следующей формуле

 

,                                                     (3)

 

где  – количество уровней вейвлет-разложения;  – номер уровня разложения;

– устанавливается порядок обнуления вейвлет-коэффициентов: удаление элементов с минимальной или максимальной амплитудой.

Достоинства данного метода пороговой обработки:

– возможность достижения компромисса между качеством речевого сигнала и вычислительной сложностью;

– гибкость фильтрации зашумленного речевого сигнала.

Недостатки данного метода пороговой обработки:

– невозможность точно определить границы сигнала и шума.

 

Блок схема алгоритма фильтрации с гибким порогом представлена на рис. 3.

Рис. 3. Блок схема алгоритма фильтрации с гибким порогом

 

На рисунке 4 слева представлены графики двух уровней вейвлет-разложения речевого сигнала (первого и второго детализирующего уровня и второго аппроксимационного уровня), а справа – графики вейлет-коэффициентов после пороговой обработки.

 

Рис. 4 Графики двух уровней вейвлет-разложения речевого сигнала и вейлет-коэффициентов после пороговой обработки

 

Статистический метод фильтрации речевого сигнала.

 

Предложен эффективный метод фильтрации речевого сигнала, использующий статистику распределения амплитуды вейвлет-коэффициентов на каждом i-м уровне разложения.

Суть реализация метода заключается в следующем:

– определение на i-м уровне вейвлет-коэффициента с одинаковой амплитудой (с или без учета знака) и максимальной частотой повторения;

– обнуление данных коэффициентов на каждом i-м уровне разложения;

– повторение предыдущих шагов с учетом достижения требуемого коэффициента сжатия при сохранении приемлемого качества восстановленного речевого сигнала.

Достоинства данного метода пороговой обработки:

– улучшение коэффициента сжатия и качества восстановленного речевого сигнала;

– наименьшая потеря полезного сигнала;

– возможность эффективного устранения избыточности в частотной области;

– эффективность фильтрации шумов, с большой длительностью.

Недостатки данного метода пороговой обработки: – высокая вычислительная сложность.

Блок схема алгоритма фильтрации статистическим методом представлена на рис. 5.

Рис. 5. Блок схема алгоритма фильтрации статистическим методом

 

На рис. 6 слева представлены графики двух уровней вейвлет-разложения речевого сигнала (первого и второго детализирующего уровня и второго аппроксимационного уровня), а справа – графики вейлет-коэффициентов после пороговой обработки.

 

Рис. 6 Графики двух уровней вейвлет-разложения речевого сигнала и вейлет-коэффициентов после пороговой обработки

 

Оценка качества восстановленного речевого сигнала.

 

Оценка качества речевого сигнала является важной задачей. Отношение сигнал/шум (ОСШ), являющееся одной из наиболее распространенных объективных мер для оценки качества фильтрации зашумленного речевого сигнала, задается выражением

 

,                      (4)

 

где s(n) и  – выборочные значения исходного и восстановленного речевого сигнала соответственно; M – общее число выборок в пределах речевого сигнала.

Данное ОСШ является интегральной мерой качества восстановления речи. Более точной мерой, учитывающей присутствие в речевом сигнале низко амплитудных компонент, является сегментное ОСШ (СЕГОСШ), основанное на вычислении кратковременного ОСШ для каждого N-точечного сегмента речи

 

, (5)

 

где L и N – число сегментов и отсчетов в сегменте речевого сигнала соответственно; i – номер сегмента речевого сигнала;M=LN – число отсчетов речевого сигнала, состоящего из L сегментов с  N отсчетами.

Так как операция усреднения осуществляется после логарифмирования, то СЕГОСШ более точно оценивает качество фильтрации нестационарного речевого сигнала.

На рис. 7 представлен график зависимости ОСШ сигнала и коэффициента сжатия при фильтрации речевого сигнала статистическим методом.

Из рис. 7 видно что ОСШ экспоненциально убывает с увеличением коэффициента сжатия. Например при коэффициенте сжатия 3 ОСШ равно 3,2.

 

Рис. 7. График зависимости ОСШ сигнала и коэффициента сжатия при фильтрации речевого сигнала статистическим методом

 

Обзор методов повышения качества и разборчивости зашумленных речевых сигналов показывает, что существует много различных подходов к обработке зашумленной речи. Такое разнообразие методов обусловлено как важностью проблемы так и отсутствием достаточно надежных методов ее решения. Объективное сравнение этих методов и выбор наиболее приемлемых сделать весьма затруднительно, так как перед системами коррекции речевых сигналов ставятся различные задачи. Например, можно в качестве главного критерия использовать повышение разборчивости речи, допуская при этом возможность искажений в тембре голоса или появление артефактов в виде структурированного шума. Можно поставить целью понижение утомляемости аудитора или сохранение натуральности голоса диктора, что достигается в основном за счет повышения качества речевого сигнала. Наконец, могут быть известны заранее важные априорные сведения, например тип или параметры шума, характеристики голоса диктора, наконец, гипотезы о произносимом тексте, что также может определяющим образом повлиять на выбор метода фильтрации. Важно отметить, что универсальных методов обработки, которые одинаково хорошо боролись бы с существенно нестационарными и стационарными, аддитивными и мультипликативными шумами, существенно повышали бы качество и одновременно разборчивость речи, сейчас нет, и возможно не будет. Как типичная (за редкими, указанными в обзоре исключениями, наблюдается обратная тенденция: если сравнивать системы обработки зашумленной речи по двум показателям – повышению качества звучания речевых сигналов и повышению разборчивости, то системы, повышающие качество и натуральность звучания, скорее всего снижают разборчивость и наоборот, повышение разборчивости приводит к понижению качества и натуральности звучания. Поэтому, многие из названных методов фильтрации нужно рассматривать как взаимодополняющие, и в идеальном случае нужно иметь библиотеку из нескольких методов фильтрации. Рассматривая последние тенденции в области обработки зашумленных сигналов, следует особенно выделить высокие результаты, полученные за счет использования математических моделей речевых сигналов, а также использование нейроподобных структур для фильтрации аддитивных стационарных шумов, хотя первые результаты в этом направлении проигрывают более традиционным методам типа минимальной среднеквадратической оценки.

 

Литература

 

  1. Шелухин О.И., Лукьянцев Н.Ф. Цифровая обработка и передача речи.- М.: Радио и связь, 2000.
  2. Рабинер Л.Р., Шафер Р.В. Цифровая обработка речевых сигналов.-М.: Радио и связь, 20011.
  3. Секунов Н.Ю. Обработка звука на PC.- СПб.: БХВ-Петербург, 2001.
  4. Нейрокомпьютеры в системах обработки изображений. – М.: Радиотехника, 2003.
  5. Назаров М.В., Прохоров Ю.Н. Методы цифровой обработки и передачи речевых сигналов.- М.: Радио и связь, 2005.

Нашли опечатку? Выделите и нажмите CTRL+Enter

Похожие документы
Обсуждение

Оставить комментарий

avatar
  Подписаться  
Уведомление о
Заказать реферат
UkrReferat.com. Всі права захищені. 2000-2019