.

Определение спектра амплитудно-модулированного колебания (курсовая)

Язык: русский
Формат: курсова
Тип документа: Word Doc
1 472
Скачать документ

Пензенский государственный университет

Кафедра «РТ и РЭС»

 

 

 

 

 

 

 

 

 

 

КУРСОВОЙ ПРОЕКТ

 

по курсу «Радиотехнические цепи и сигналы»

на тему

«Определение спектра

амплитудно-модулированного колебания»

 

 

 

 

 

 

 

 

 

 

 

 

 

Задание выполнил студент

группы 01РР2

Чернов С. В.

Задание проверил

Куроедов С. К.

 

 

 

 

 

 

Пенза 2003

 

Содержание

  1. Формулировка задания . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
  2. Шифр задания и исходные данные . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
  3. Аналитическая запись колебания UW(t) . . . . . . . . . . . . . . . . . . . . . . . . . 3
  4. Определение коэффициентов аn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
  5. Определение коэффициентов bn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
  6. Определение постоянной составляющей А0 . . . . . . . . . . . . . . . . . . . . . 6
  7. Определение амплитуд An и начальных фаз Yn . . . . . . . . . . . . . . . . . . 7
  8. Временная диаграмма колебания, представляющего собой сумму

найденной постоянной составляющей и первых пяти гармоник

колебания uW(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   8

  1. Построение графиков АЧХ и ФЧХ ограниченного спектра

колебания uW(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   9

  1. Аналитическая запись АМ колебания . . . . . . . . . . . . . . . . . . . . . . . . . 9
  2. Построение графиков АЧХ и ФЧХ АМ колебания . . . . . . . . . . . . . . 11
  3. Определение ширины спектра АМ колебания. . . . . . . . . . . . . . . . . . . 12


  1. Формулировка задания

Определить спектр АМ колебания u(t) =Um(t)cos(w0t+y0), огибающая амплитуды которого связана линейной зависимостью с сигналом сообщения Uc(t), т.е. Um(t).=U0+ Uc(t)

(коэффициент пропорциональности принят равным единице).

Сигнал сообщения Uc(t) представляет собой сумму первых пяти гармоник периодического колебания uW(t) (см. раздел 3). Найденный аналитически спектр сигнала сообщения и АМ колебания должен быть представлен в форме амплитудно-частотной (АЧХ) и фазо-частотной (ФЧХ) характеристик. Необходимо кроме того определить парциальные коэффициенты глубины модуляции mn. Несущая частота определяется как w0=20W5, где W5 – частота пятой гармоники в спектре колебания uW(t). Значение амплитуды U0 несущей частоты w0 принимается равным целой части удвоенной суммы , где Un – амплитудное значение гармоники спектра колебания uW(t).

  1. Шифр задания и исходные данные

Шифр задания: 17 – 3

Исходные данные приведены в таблице 1.

Таблица 1.

U1, В

 

 

U2, В

 

 

T, мкс

 

 

t1, мкс

 

 

3

 

 

3

 

 

250

 

 

60

 

 

 

Временная диаграмма исходного колебания

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Аналитическая запись колебания UW(t)

Сначала выполним спектральный анализ заданного колебания uΩ(t). Для этого, пользуясь графической формой колебания и заданными параметрами, запишем его аналитически. Весь период Т колебания разбиваем на три интервала: [0;t1], [t1;t2] и [t2; T] (точка  является серединой интервала [t1; T]). Первый интервал представлен синусоидой, второй и третий – линейными функциями. В общем виде аналитическая запись сигнала будет выглядеть так:

при ,

uΩ(t)=                      при ,                                         (1)

при .

Частота синусоиды  (в знаменателе записан период этой синусоиды).

Значения k1 и b1 определяем из системы уравнений

;

,

получаемой путем подстановки во второе уравнение системы (1) значений времени t1 и  и соответствующих им значений колебания uΩ(t) (uΩ(t1)=0, uΩ(t)=-U2). Решение указанной системы уравнений дает , . Аналогично определяем k2 и b2. В третье уравнение системы (1) подставляем значения t2 и T и соответствующие им значения колебания uΩ(t) (uΩ(t2)=-U2, uΩ(T)=0).

;

.

Решив систему, получаем ,

В результате изложенного система уравнений (1) принимает вид

при ,

uΩ(t)=              при ,                           (2)

при .

 

 

 

 

Для дальнейших расчетов определим:

мкс;

рад/с

рад/с

Для разложения сигнала в ряд Фурье вычислим значения аn, bn, Аn и φn первых пяти гармоник.

4. Определение коэффициентов an

Посчитаем каждый из интегралов отдельно:

;

,

первый интеграл интегрируем по частям:

,            ,

,        .

;

аналогично интегрируем:

.

Запишем выражение для аn, как функции порядкового номера n гармоник колебания UW(t):

.

Подставляя ранее вычисленные значения k1 b1, k2, b2, заданное значение U1 и значения n=1,2,…, находим численные значения пяти коэффициентов an:

В

В

В

В

В.

Заносим полученные результаты в таблицу 2.

5. Определение коэффициентов bn

.

Расчет каждого из интегралов произведём отдельно:

;

,            ,

,         .

;

.

Запишем выражение для bn, как функции порядкового номера n гармоник колебания UW(t):

 

.

Подставляя ранее вычисленные значения k1 b1, k2, b2, заданное значение U1 и значения n=1,2,…, находим численные значения пяти коэффициентов bn:

В

В

В

В

В.

Занесём полученные данные в таблицу 2.

6. Определение постоянной составляющей А0

В.

7. Определение амплитуд An и начальных фаз Yn

Значения An и Ψn вычисляем с помощью полученных ранее коэффициентов an и bn.

,

.

В,

В,

В,

В,

В;

рад,

рад,

рад,

рад,

рад.

Полученные результаты заносим в таблицу 2.

 

 

Таблица 2

n12345
an1.6410.033-0.368-0.237-0.128
bn1.5460.5480.4420.028-0.093
An2.2540.5490.5750.2390.159
Ψn0.7561.5112.2643.023-2.512

8. Временная диаграмма колебания, представляющего собой сумму найденной постоянной составляющей и первых пяти гармоник

t, мкс
 
 
 
 
 

u(t) – заданное колебание,

S(t)=S1(t)+ S2(t)+ S3(t)+ S4(t)+ S5(t)+A0,

S1(t) – первая гармоника,

S2(t) – вторая гармоника,

S3(t) – третья гармоника,

S4(t) – четвертая гармоника,

S5(t) – пятая гармоника,

A0 – постоянная составляющая.

 

 

 

9. Построение графиков АЧХ и ФЧХ ограниченного спектра колебания uW(t)

Пользуясь данными таблицы 2, строим АЧХ и ФЧХ сигнала сообщения uc(t), представляющего собой, в соответствии с заданием, сумму первых пяти гармоник колебания uW(t).

АЧХ колебания uW(t)

 

ФЧХ колебания uW(t)

 

 

 

10. Аналитическая запись АМ колебания

В качестве модулирующего колебания (сигнала сообщения) используем только первые пять гармоник спектра колебания uW(t) (постоянную составляющую А0 отбрасываем). В соответствии с этим искомое амплитудно-модулированное колебание запишем как

рад/с – несущая частота.

Значение амплитуды U0 несущей частоты w0 принимается равным целой части удвоенной суммы , где Un – амплитудное значение гармоники спектра колебания UW(t).

,

В.

– начальная фаза несущего колебания.

– парциальные коэффициенты глубины модуляции.

Вычислим значения парциальных коэффициентов:

,

,

,

,

.

Полученные результаты заносим в таблицу 3.

Представим АМ колебание в форме суммы элементарных гармоник

.

Вычислим значения :

В,

В,

В,

В,

В.

Полученные результаты заносим в таблицу 3.

 

 

Таблица 3.

n12345
mn0.32210.07840.08220.03410.0227
Bn, В1.1270.2740.2880.1190.079

 

11. Построение графиков АЧХ и ФЧХ АМ колебания

Воспользовавшись численными значениями U0, ω0, Bn, Ω, Ψ0, Ψn, построим графики АЧХ и ФЧХ амплитудно-модулированного колебания.

АЧХ АМ колебания

 

 

 

ФЧХ АМ колебания

12. Определение ширины спектра АМ колебания

Ширина спектра АМ колебания  равна удвоенному значению наивысшей частоты в спектре модулирующего низкочастотного сигнала.

рад/с.

 

Нашли опечатку? Выделите и нажмите CTRL+Enter

Похожие документы
Обсуждение

Оставить комментарий

avatar
  Подписаться  
Уведомление о
Заказать реферат
UkrReferat.com. Всі права захищені. 2000-2019