.

Моделирование процессов разряда-ионизации серебра на поверхности твердого электрода

Язык: русский
Формат: реферат
Тип документа: Word Doc
0 658
Скачать документ

Iineianeee Ainoaea?noaaiiue Oieaa?neoao

Oeie/aneee oaeoeueoao

Iiaeaee?iaaiea i?ioeannia ?ac?yaea-eiiecaoeee na?aa?a ia iiaa?oiinoe
oaa?aeiai yeaeo?iaea

Eo?niaay ?aaioa

ii aiaeeoe/aneie oeiee

nooaeaioa 213 a?oiiu

Eyoiaa Aioiia Ai?eniae/a.

Iao/iue ?oeiaiaeeoaeue –

e. o. i., aeioeaio A. E. Eaiaiaa.

I?aiiaeaaaoaeue –

e. o. i., noa?oee i?aiiaeaaaoaeue

A. A. Ai?caiei.

Iineaa, 1997.

Aaaaeaiea

Iaoiae eiaa?neiiiie aieueoaiia?iiao?ee iicaieyao eco/aoue i?ioeannu
?ac?yaea-eiiecaoeee iaoaeeia. Iniiaiua oai?aoe/aneea iieiaeaiey
aieueoaiia?iiao?ee auee eceiaeaiu a ?aaioao Aeaeaoay – Aa?ceina e
Ieeieueniia – Oaeia. A?aeieiie aue i?aaeeiaeai ?yae oai?aoe/aneeo
niioiioaiee, iicaieythueo ioeaieoue noaiaiue ia?aoeiinoe e nei?inoue
i?ioeannia ?ac?yaea-eiiecaoeee. Aeey i?iaa?ee yoeo oai?aoe/aneeo
niioiioaiee a ea/anoaa iiaeaeueiiai i?eia?a ia?aoeiiai i?ioeanna
eniieueciaaii na?aa?i (I), ii aiia?aoo?iia iniauaiea ia iicaieyei
iaeiieoue aieueoie iannea aeaiiuo aeey iieo/aiey iaaeaaeiuo ioeaiie
eeiaoe/aneeo ia?aiao?ia. Aeey eco/aiey eeiaoeee yeaeo?ioeie/aneiai
?anoai?aiey iaoaeeia i?aaeeiaeaiu ?acee/iua oaa?aeua yeaeo?iaeu, iaeiaei
a eeoa?aoo?a ionoonoaotho aeaiiua ii eco/aieth yeaeo?iaeiuo i?ioeannia n
i?eiaiaieai oaeaneoaeeiauo yeaeo?iaeia.

A eeoa?aoo?a i?eaaaeaiu ?acee/iua iiaeaee, iienuaathuea ia?aoeiia
?anoai?aiea iaoaeea n iiaa?oiinoe oaa?aeiai yeaeo?iaea. Iaeiaei
n?aaieoaeueiue aiaeec yoeo iiaeaeae ia i?iaiaeeeny. Iaaeaeo oai,
i?aaenoaaeyei eioa?an n?aaieoue yoe iiaeaee e yenia?eiaioaeueii
iieo/aiiua aieueoaiia?iua e?eaua, a oaeaea ?anniio?aoue iniaaiiinoe
i?ioeanna ?ac?yaea-eiiecaoeee na?aa?a ia oaeaneoaeeiaii yeaeo?iaea.

Oeaeueth ?aaiou auei i?iaaaeaiea n?aaieoaeueiiai aiaeeca iiaeaeae
ia?aoeiiai ?anoai?aiey iaoaeea n iiaa?oiinoe oa??aeiai yeaeo?iaea, a
oaeaea n?aaiaiea yoeo iiaeaeae n yenia?eiaioaeueii iieo/aiiuie
aieueoaiia?iuie e?eauie.

Eeoa?aoo?iue iaci?

I?ioeannu yeaeo?ioeie/aneiai ?anoai?aiey iaoaeeia

Yeaeo?iaeiue i?ioeann ninoieo ec ?yaea iineaaeiaaoaeueiuo noaaeee:

1. Iiaeaiae aauanoaa ec iauaia ?anoai?a a ciio ?aaeoeee.

2. Yeaeo?ioeie/aneay ?aaeoeey.

3. Ioaiae i?iaeoeoia.

Iiyoiio nei?inoue yeaeo?ioeie/aneiai i?ioeanna iiaeao eeieoe?iaaoueny
eeai ianniia?aiinii aauanoaa – ia?aoeiue i?ioeann, eeai
?ac?yaeii-eiiecaoeeae – iaia?aoeiue i?ioeann, eeai oai e ae?oaei.

I?aaeiieiaeei, /oi ia?aiin yeaeo?iia i?ienoiaeeo auno?i e i?ioeann
eiio?iee?oaony oieueei nei?inoueth aeeooocee (eiiaaeoeeae e iea?aoeeae
iiaeii i?aiaa?a/ue). A neo/aa eniieueciaaiey ieineiai yeaeo?iaea
ianniia?aiin aauanoaa e yeaeo?iaeo iiaeii n/eoaoue eeiaeiui. Iiyoiio
iniiaiia o?aaiaiea aeeooocee ( aoi?ie caeii Oeea [2] ) iiaeii caienaoue,
eae

aeey ieeneaiiie oi?iu e

aeey ainnoaiiaeaiiie oi?iu.

Aeey iienaiey oieia, naycaiiuo n yeaeo?iaeiuie ?aaeoeeyie, iaiaoiaeeii
?aoeoue o?aaiaiey (1), (2). Aia?aua yoo caaea/o ?aoeee Oaa/ee e ?aiaeen.
?aiaeen i?eiaiee aeey ?aoaiey a?aoe/aneee iaoiae. Aiaeeoe/aneee iaoiae,
eca?aiiue Oaa/eeii, caeeth/aaony a i?eiaiaiee i?aia?aciaaiey Eaieana.
Iinea ia?aoiiai i?aia?aciaaiey iieo/aaony au?aaeaiea aeey iioiea
aauanoaa Ox io iiaa?oiinoe yeaeo?iaea.

A ieii/aoaeueiie oi?ia eioaa?aeueiia o?aaiaiea (3), iinea ia?aoiaea e
aac?acia?iui eii?aeeiaoai z = t/b, auaeyaeeo neaaeothuei ia?acii:

?aoaiea (5) aeaao caaeneiinoue c(bt) io bt i?e aeaiiii xq. Yoa ooieoeey
ii?aaeaeyao oi?io aieueoaiia?iuo e?eauo aeey ia?aoeiiai i?ioeanna. bt
naycaii n iioaioeeaeii

o.a. c(bt) iiaeii i?aaenoaaeoue eae c([E – E0]n) eee i(E).

Ec o?aaiaiey (5) neaaeoao, /oi

O?aaiaiey (3) e (5) ?aoaee ?acee/iuie niiniaaie.

Iaoeoaea e Ayaa [1] iieo/eee neaaeothuaa aiaeeoe/aneia ?aoaiea o?aaiaiey
(5)

Aioooaei [6] ?aoee o?aaiaiea (15) oaeaea a aiaeeoe/aneii aeaea

Eioaa?aeu a ooieoeeyo (8), (9) aaoi?u ?aaio [1,6] ?ane?uee eae
eioaa?aeueiia o?aaiaiea Aaaey e au/eneeee aai cia/aiey ii oi?ioea
Iaeei?aia.

Ieeieuenii e Oaei [7] ?aoeee o?aaiaiea (5) /eneaiiui iaoiaeii a aeaea
eioaa?aea ?eiaia-Noeeoaeaoa

?aeiioo [8] au?acee (5) a aeaea ?yaea:

Iaeaeaiiay ethaui ec i?eaaaeaiiuo niiniaia ooieoeey ii?aaeaeyao oi?io
aieueoaiia?iuo e?eauo a neo/aa ia?aoeiiai yeaeo?iaeiiai i?ioeanna.
O?aaiaiea oiea ieea eaaei iieo/eee ia iniiaa o?aaiaiey (7) e a?aoeea
ooieoeee (8 – 11). Yoi au?aaeaiea ecaanoii eae o?aaiaiea ?aiaeena –
Oaa/eea:

A neo/aa xq > 6 ai anao ?aoaieyo cmax = 0.447. Aeey oaiia?aoo?u 25 °N
yoi au?aaeaiea naiaeeony e caaeneiinoe

Eaaay iieooe?eia ieea, eniieuecoaiay eae e?eoa?ee ia?aoeiinoe, a yoie
iiaeaee aeey ia?aoeiiai i?ioeanna ninoaaeyao 0.056/n, A.

Aeaeaoaai e Aa?ceinii [9] auea iaeaeaia ooieoeey, ii?aaeaeythuay oi?io
aieueoaiia?iie e?eaie a neo/aa ia?aoeiiai ?anoai?aiey iauaiiiai inaaeea
iaoaeea (aeoeaiinoue inaaeea i?eieiaaony ?aaiie 1). A yoii neo/aa
e?aaaia oneiaea i?eieiaao aeae

Au?aaeaiea aeey oiea auaeyaeeo eae

z yaeyaony aniiiiaaoaeueiie ia?aiaiiie. Ooieoeey (16) eiaao iaeneioi,
?aaiue 0.541 i?e bt = 0.924. Niioaaonoaothuee oie ieea i?e 25 °N
ninoaaeyao

Eaaay iieooe?eia ieea a yoie iiaeaee aeey ia?aoeiiai i?ioeanna
ninoaaeyao 0.016n, A.

Ieeieuenii [11] onoaiiaeea caaeneiinoue i(E) aeey ?anoai?aiey
ioaeaeueiiai iacaiieiaiiiai iiiineiy iaoaeea n iiaa?oiinoe ieineiai
yeaeo?iaea. I?e yoii o?aaiaiea Ia?inoa caienuaaaony eae

a = m/ms (19)

a – aeoeaiinoue inaaeea

m – eiee/anoai iaoaeea ia yeaeo?iaea,

ms – eiee/anoai iaoaeea ia aaeeieoeo aeoeaiinoe,

f – eiyooeoeeaio aeoeaiinoe,

Ap – ?aaiiaaniue iioaioeeae, niioaaonoaothuee a0 e n0

Aeoeaiinoue a yaeyaony a aeaiiii neo/aa ooieoeeae a?aiaie

Noaia ?aoaiey oaeay aea, eae e a i?aaeuaeouai neo/aa. O?aaiaiea
aieueoaiia?iie e?eaie a eioaa?aeueiie oi?ia a yoie iiaeaee auaeyaeeo
oae:

Oi/ee ia?aie i?iecaiaeiie yc(bt) iienuaatho oi?io e?eaie i(E) e

i = nFm0byc(bt) (23)

Yoi o?aaiaiea yeaeaaeaioii o?aaiaieth

i = q0byc(bt) (24)

I?e I > 100 iaeneioi ooieoeee yc(bt) ii?aaeaeyaony eae

[-yc(bt)max] = 0.298 ± 0.002 (25)

I?e yc/ycmax > 0.1 auiieiyaony oneiaea

(bt)2 – (bt)1 = ln ( H2 / H1) (26)

Eaaay iieooe?eia ieea ninoaaeyao 0.040n, A.

A ?aaioao A?aeieiie [ 3, 4, 12 – 14 ] auea ?aoaia caaea/a ?anoai?aiey
iaoaeea n yeaeo?iaea i?e neaaeothueo aeiiouaieyo [15]:

1. ?anoai? niaea?aeeo ecauoie oiiiaiai yeaeo?ieeoa, iea?aoeeae eiiia
iiaeii i?aiaa?a/ue.

2. Iiaeaiae eiiia iaoaeea e iiaa?oiinoe ieineiai yeaeo?iaea a eaoiaeiie
noaaeee e ioaiae a aiiaeiie inouanoaeyaony iooai iieoaaneiia/iie
eiiaaeoeaiie eee anoanoaaiiie aeeooocee.

3. Iioie eiiia iaoaeea aaeece iiaa?oiinoe yeaeo?iaea caaeneo io
nei?inoe yeaeo?iaeiie ?aaeoeee.

Oaeaea auei i?eiyoi i?aaeiieiaeaiea i nouanoaiaaiee aeaoo
yia?aaoe/aneeo ninoiyiee iaoaeea ia yeaeo?iaea. Ia?aia yia?aaoe/aneia
ninoiyiea – iee?ioaca – oa?aeoa?ii aeey iaeuo eiee/anoa inaaeea ia
yeaeo?iaea. A yoii neo/aa aai aeoeaiinoue a, ii?aaeaeyaioth iauei
niioiioaieai

i?e iaeuo Q iiaeii i?aaenoaaeoue eae

o.a. aeoeaiinoue inaaeea i?yii i?iii?oeeiiaeueia aai eiee/anoao ia
yeaeo?iaea.

Ai aoi?ii yia?aaoe/aneii ninoiyiee – iae?ioaca – aeoeaiinoue ia?anoaao
caaenaoue io Q e ?aaia aeoeaiinoe iauaiiie oacu, o.a.

a = aY =d/M.

O?aaiaiey (1), (2) auee ?aoaiu ni neaaeothueie a?aie/iuie oneiaeyie:

A eaaeaeue iiiaio a?aiaie t aeoeaiinoue ii?aaeaeyaony o?aaiaieai:

Au?aaeaiea aeey iioaioeeaea yeaeo?iaea auaeyaeeo oae:

d – oieueia aeeoooceiiiiai neiy, eioi?ay aeey a?auathuaainy aeeneiaiai
yeaeo?iaea ?aaia [5]

?aoaiea yoiai o?aaiaiey aeaao caaeneiinoue oiea yeaeo?ioeie/aneiai
?anoai?aiey iaoaeea io a?aiaie eee iioaioeeaea

Yenia?eiaioaeueiay /anoue

Aiia?aoo?a, ?aaeoeau

Eniieueciaaeanue o??oyeaeo?iaeiay y/aeea I-ia?aciie oi?iu: eiaeeeaoi?iue
yeaeo?iae – oeeeeiae?e/aneee oaeaneoaeeiaue (ieiuaaeue iiaa?oiinoe 0.126
ni2), iiaeao a?auaoueny ni nei?inoueth 2000 ia/iei, yeaeo?iae n?aaiaiey
– ieaoeiiaay oieueaa, ieiuaaeue iiaa?oiinoe 0,3 ni2, aniiiiaaoaeueiue
yeaeo?iae – ieaoeiiaay i?iaieiea, aeeaiao? 0.3 ii, aeeeia 0,5 ni.

Eiioeaio?aoeey eiiia Ag+ ai anao iiuoao ninoaaeyea 1,8*10-6 M, oiiiaui
yeaeo?ieeoii yaeyeny 1M ?anoai? KNO3, iiaeeeneaiiue acioiie eeneioie aei
pH=2. A y/aeeo aaiaeeee 5 ie oiia.

Aiiaeiua eiaa?neiiiua aieueoaiia?iua e?eaua yeaeo?ioeie/aneiai
?anoai?aiey na?aa?a iieo/aeenue n eniieueciaaieai aiaeecaoi?a
aieueoaiia?iiao?e/aneiai AAA-1, nii?yae?iiiai n eiiiuethoa?ii IBM PC
(i?ioeanni? Intel 80386SX) n iiiiuueth eioa?oaeniie ieaou L-154.

Au/eneaiey ia YAI

A i?ioeanna n?aaieoaeueiiai aiaeeca oai?aoe/aneeo iiaeaeae ia?aoeiiai
yeaeo?ioeie/aneiai ?anoai?aiey iaoaeea iaiaoiaeeii auei ninoaaeoue
iiae?iaiua oaaeeoeu ooieoeee, iienuaathueo yoe iiaeaee. Aieueoeinoai ec
yoeo ooieoeee niaea?aeao eioaa?aeu, eioi?ua, eae ecaanoii ec
iaoaiaoe/aneiai aiaeeca, ia iiaoo auoue i?aaenoaaeaiu a aiaeeoe/aneii
aeaea. Iiyoiio yoe eioaa?aeu au/eneyee i?eaeeae?iii n iiiiuueth YAI. Ana
ii?aaeae?iiua nianoaaiiua (a niunea ?eiaia) eioaa?aeu au/eneyee ii
oi?ioea Neiiniia [10]. Ana au/eneaiey i?iecaiaeeee ia eiiiuethoa?a IBM
PC ii i?ia?aiiai, iaienaiiui ia ycuea Borland C++.

Iiaeaee i?ioeannia ia?aoeiiai yeaeo?i?anoai?aiey na?aa?a

Iiaeaeue Aeaeaoay-Aa?ceina iienuaaao oi?io aieueoaiia?iie e?eaie a
neo/aa ia?aoeiiai ?anoai?aiey iauaiiiai inaaeea iaoaeea (aeoeaiinoue
inaaeea i?eieiaaony ?aaiie 1) (o?aaiaiey (15), (16)).

Auea ninoaaeaia oaaeeoea cia/aiee yoie ooieoeee. Iaeneioi (=0.541 i?e
bt=0.924. A?aoee yoie ooieoeee i?eaaaeai ia ?en. 1:

?en. 1. Ii?ie?iaaiiay aieueoaiia?iay e?eaay ia?aoeiiai
yeaeo?ioeie/aneiai ?anoai?aiey iaoaeea (iiaeaeue Aeaeaoay-Aa?ceina).

Iiaeaeue Ieeieueniia-Oaeia iienuaaaony o?aaiaieai (9). Iiaeaeue ia
o/eouaaao ia?aciaaiey iiaie oacu ia iiaa?oiinoe yeaeo?iaea. A?aoeee yoie
ooieoeee i?e ?acee/iuo (( i?eaaaeaiu ia ?en. 2. Iiaeii caiaoeoue, /oi
i?e ln((() ( 6.5 oi?ia e?eaie ia caaeneo io cia/aiey ((. Iioaioeeae
i?e oaaee/aiee (( niauaaony a iaeanoue aieueoeo ii aaee/eia cia/aiee.

?en. 2. Ii?ie?iaaiiua ii aunioa ieeia a?aoeee ooieoeee (9) i?e
neaaeothueo cia/aieyo ln(((): 1(1), 6.5(2), 7.5(3), 11.8(4), 13.8(5).

Iiaeaeue I. Ieeieuenii iienuaaao oi?io aieueoaiia?iie e?eaie i?e
?anoai?aiee iiiineiy iaoaeea n iiaa?oiinoe oaa?aeiai yeaeo?iaea. E?eaay
iienuaaaony o?aaiaieai (21) a eioaa?aeueiie oi?ia. Oi?io aieueoaiia?iie
e?eaie iienuaaao ia?aay i?iecaiaeiay ooieoeee ((bt).

Auee ninoaaeaiu oaaeeoeu cia/aiee (((bt) i?e ?aciuo cia/aieyo H. Ia ?en.
3 i?eaaaeaiu ii?ie?iaaiiua (ana iaeneioiu naaaeaiu a oi/eo (0;1))
a?aoeee ooieoeee (((bt) i?e H=0.1, 1, 3, 10, 100, 1000, 10000, 170000.
Ec yoiai ?enoiea aeaeii, /oi i?e aieueoeo H oi?ia e?eaie noaiiaeony
iinoiyiiie. Aunioa iaeneioia i?e H(100 ii/oe ia iaiyaony (0.298(0.002),
a iioaioeeae iaeneioia niauaaony a iaeanoue aieaa iieiaeeoaeueiuo
cia/aiee niaeanii o?aaiaieth (26):

?en. 3. Ii?ie?iaaiiua a?aoeee ooieoeee (((bt) i?e neaaeothueo cia/aieyo
H: 0.1(1), 1(2), 3(3), 10(4), 100(5), 1000(6), 10000(7), 170000(8).

Iiaeaeue A?aeieiie iniiauaaaony ia i?aaeiieiaeaiee i nouanoaiaaiee
aeaoo yia?aaoe/aneeo ninoiyiee iaoaeea ia yeaeo?iaea. Ia?aia
yia?aaoe/aneia ninoiyiea – iee?ioaca – oa?aeoa?ii aeey iaeuo eiee/anoa
iaoaeea ia yeaeo?iaea, aeoeaiinoue caaeneo io aai eiee/anoaa. Ai aoi?ii
ninoiyiee – iae?ioaca aeoeaiinoue ia?anoaao caaenaoue io eiee/anoaa
iaoaeea e ?aaia aeoeaiinoe iauaiiie oacu.

Ia ?en. 4 i?eaiaeeony aieueoaiia?iay e?eaay, iieo/aiiay i?e iiaenoaiiaea
a o?aaiaiea (34) neaaeothueo cia/aiee ia?aiao?ia: n=1, F=96485 Ee/iieue,
A=0.126 ni2, D=1.54*10-5 ni2/c, c0 = 1.8*10-9 iieue/ni3, (=1,3*10-3 ni,
(=10-6 Ee-1, (Q=1, R=8,314 Aeae/iieue*E, T=298 K, v=0.1 A/n,
niioaaonoaothueo oneiaeyi yenia?eiaioa.

?en. 4. Aieueoaiia?iay e?eaay, iieo/aiiay i?e iiaenoaiiaea a o?aaiaiea
(34) ia?aiao?ia, niioaaonoaothueo oneiaeyi yenia?eiaioa.

A oaae. 1-3 i?eaaaeaiu iaeioi?ua ia?aiao?u, oa?aeoa?ecothuea oi?io
ieeia aeey neaaeothueo iiaeaeae: 1 (Aeaeaoay-Aa?ceina), 2.1 – 2.5
(Ieeieueniia-Oaeia), 3.1 – 3.8 (I. Ieeieuenii), 4 (A?aeieiie), 5
(yenia?eiaio).

Oaaeeoea 1

EII?AeEIAOU IAENEIOIIA OOIEOeEE:

N Iiaeaeue bt cia/.

ooie. eiyoo. i, ieA

1 Iiaeaeue Aeaeaoay-Aa?ceina 0.92 0.541 3.312 1.792

2 Iiaeaeue Ieeieueniia-Oaeia i?e

2.1 ln((()=1 1.99 0.465 2.962 1.376

2.2 ln((()=6.5 7.61 0.446 2.962 1.322

2.3 ln((()=7.5 8.61 0.446 2.962 1.322

2.4 ln((()=11.8 12.91 0.446 2.962 1.322

2.5 ln((()=13.8 14.91 0.446 2.962 1.322

3 Iiaeaeue I. Ieeieuenii i?e

3.1 H=0.1 0.23 0.703 1.974 1.387

3.2 H=1 0.99 0.456 1.974 0.900

3.3 H=3 1.79 0.363 1.974 0.717

3.4 H=10 2.87 0.321 1.974 0.634

3.5 H=100 5.12 0.300 1.974 0.592

3.6 H=1000 7.42 0.298 1.974 0.588

3.7 H=10000 9.72 0.296 1.974 0.584

3.8 H=170000 12.55 0.296 1.974 0.584

4 Iiaeaeue A?aeieiie 13.90 1.150 — 1.150

5 Yenia?eiaio 13.11 1.611 — 1.611

Oaaeeoea 2

IIEOOE?EIU IEEIA:

N eaaay i?aaay i?aa/eaa iauay

1 1.240 0.639 0.5153 1.879

2.1 5.555 iao iao iao

2.2 5.731 2.202 0.3842 7.933

2.3 5.731 2.202 0.3842 7.933

2.4 5.731 2.202 0.3842 7.933

2.5 5.731 2.202 0.3842 7.933

3.1 iao 0.92 iao iao

3.2 0.82 1.25 1.5244 2.07

3.3 1.24 1.32 1.0645 2.56

3.4 1.49 1.36 0.9128 2.85

3.5 1.57 1.37 0.8726 2.94

3.6 1.59 1.36 0.8553 2.95

3.7 1.59 1.37 0.8616 2.96

3.8 1.59 1.37 0.8616 2.96

4 1.461 0.984 0.6735 2.445

5 1.49 1.01 0.6779 2.50

Oaaeeoea 3.

EANAOAEUeIUA A OI*EAO, II?AAeAEssTHUEO

IIEOOE?EIO (ana ooieoeee ii?ie?iaaiu):

N i?aaay eaaay

1 Y = -1.5258*X + 1.4744 Y = 0.3176*X + 0.8937

2.1 iao Y = 0.0451*X + 0.7505

2.2 Y = -0.3242*X + 1.2140 Y = 0.0421*X + 0.7412

2.3 Y = -0.3242*X + 1.2140 Y = 0.0421*X + 0.7412

2.4 Y = -0.3242*X + 1.2140 Y = 0.0421*X + 0.7412

2.5 Y = -0.3242*X + 1.2140 Y = 0.0421*X + 0.7412

3.1 Y = -1.0830*X + 1.4964 iao

3.2 Y = -0.4684*X + 1.0855 Y = 1.4535*X + 1.6919

3.3 Y = -0.4618*X + 1.1096 Y = 0.6127*X + 1.2597

3.4 Y = -0.4840*X + 1.1582 Y = 0.4316*X + 1.1431

3.5 Y = -0.4918*X + 1.1738 Y = 0.3770*X + 1.0919

3.6 Y = -0.4966*X + 1.1754 Y = 0.3650*X + 1.0804

3.7 Y = -0.4924*X + 1.1746 Y = 0.3689*X + 1.0866

3.8 Y = -0.4924*X + 1.1746 Y = 0.3689*X + 1.0866

4 Y = -0.8394*X + 1.3266 Y = 0.3834*X + 1.0601

5 Y = -0.589*X + 1.060 Y = 0.253*X + 0.876

?en. 5. I?eaiaeeiua a oaaeeoeao ia?aiao?u ieeia (oneiaii).

Ec i?eaaaeaiiuo aeaiiuo aeaeii, /oi iaeaieaa aeecei yenia?eiaioo ii
iioaioeeaeai niioaaonoaotho iiaeaee 4, 3.8, 2.4 (oaae. 1) . Ii aunioai
iaeaieaa aeecee e yenia?eiaioaeueiui aeaiiui iiaeaee 1, 4 (oaae. 1).
Enoiaey ec iieooe?ei ieeia e o?aaiaiee eanaoaeueiuo a oi/eao,
ii?aaeaeythueo iieooe?eio, oi?io yenia?eiaioaeueiie e?eaie eo/oa
iienuaatho iiaeaee 3.8, 4 (oaae. 2, 3). Ec anaai auoaneacaiiiai
neaaeoao, /oi iaeaieaa oi/ii yenia?eiaio iienuaatho iiaeaee 1, 2.4, 3.8,
4, i?aaenoaaeaiiua ia ?en. 6-8. Niioaaonoaothuea ia?aiao?u ieeia
i?aaenoaaeaiu a oaae. 4.

?en. 6. Oai?aoe/aneea aieueoaiia?iua e?eaua iiaeaeae: 1(1), 2.4(2),
3.8(3), 4(4), e yenia?eiaioaeueiay e?eaay(5).

?en. 7. Oai?aoe/aneea aieueoaiia?iua e?eaua iiaeaeae: 1(1), 2.4(2),
3.8(3), 4(4), e yenia?eiaioaeueiay e?eaay(5), iaeneioiu niaiauaiu.

?en. 8. Ii?ie?iaaiiua oai?aoe/aneea aieueoaiia?iua e?eaua iiaeaeae:
1(1), 2.4(2), 3.8(3), 4(4) e yenia?eiaioaeueiay e?eaay(5).

Oaaeeoea 4

Iaeioi?ua ia?aiao?u ieeia, eeethno?e?othuea eo niioaaonoaea
yenia?eiaioaeueiui aeaiiui.

Iiaeaeue 3.8 4 yeni. 1

Aunioa ieea, ieA 0.584 1.150 1.611 1.792

Eaaay iieooe?eia ieea, ((, bt 1.37 0.984 1.01 0.639

I?aaay iieooe?eia ieea, (+, bt 1.59 1.461 1.49 1.240

Ioiioaiea eaaie/i?aaie iieooe?ei 0.862 0.673 0.677 0.515

Oaeei ia?acii, ia iniiaaiee i?iaaaeaiiiai n?aaieoaeueiiai aiaeeca
iiaeii naeaeaoue i?aaeiieiaeaiea, /oi i?ioeann ?ac?yaea-eiiecaoeee Ag ia
oaeaneoaeeiaii yeaeo?iaea aeecie e ia?aoeiiio. ?anniio?aiiua
oai?aoe/aneea caaeneiinoe iieacaee, /oi iaeuecy iaeiicia/ii iienaoue
yenia?eiaio ie iiaeaeueth iiiineieiiai iie?uoey, ie iiaeaeueth iau?iiiai
inaaeea, iiyoiio iiaeii i?aaeiieiaeeoue, /oi ia iiaa?oiinoe yeaeo?iaea
iaeiia?aiaiii i?enoonoaotho aeaa oacu: aaeni?ae?iaaiiue iiiineie e
iau?iiua ca?iaeuoe iaoaeea.

Auaiaeu

I?iaaaeai n?aaieoaeueiue aiaeec iiaeaeae Aeaeaoay-Aa?ceina,
Ieeieueniia-Oaeia, I. Ieeieuenii e A?aeieiie, iienuaathueo ia?aoeiia
yeaeo?ioeie/aneia ?anoai?aiea iaoaeea n iiaa?oiinoe oa??aeiai
yeaeo?iaea.

Iieo/aiu yenia?eiaioaeueiua aiiaeiua eiaa?neiiiua aieueoaiia?iua e?eaua
?anoai?aiey na?aa?a e i?iaaaeaii eo n?aaiaiea n nouanoaothueie
oai?aoe/aneeie iiaeaeyie.

Auneacaii i?aaeiieiaeaiea, /oi i?ioeann ?ac?yaea-eiiecaoeee na?aa?a,
i?ioaeathuee ia oaeaneoaeeiaii yeaeo?iaea, nouanoaaiii ia ioee/aaony io
ia?aoeiiai.

Nienie eeoa?aoo?u

1. Matsuda H., Ayabe Y. // Z. Elektrochem. 1955. B.59. ?2. P.494.

2. Aeaianeei A.A., Iao?ee I.A. Yeaeo?ioeiey. I.: Oeiey. 1987. 265 n.

3. A?aeieia O. C., ss?oieia A. A. // Yeaeo?ioeiey. 1966. O.2. ?7. N.781.

4. A?aeieia O. C. // Yeaeo?ioeiey. 1966. O.2. ?8. N.901.

5. Aaethn C. Oai?aoe/aneea iniiau yeaeo?ioeie/aneiai aiaeeca. I.: Ie?.
1974. 552n.

6. Aioooaei ss. I. // Aeiee. AI NNN?. 1959. O.126. ?3. N. 598.

7. Nicholson R. S., Shain I. // Anal. Chem. 1964. V.36. ?3. P.706.

8. Reinmuth W.H. // Anal. Chem. 1962. V.34. ?7. P.1446.

9. Aeaeaoae I. Iiaua i?eai?u e iaoiaeu a yeaeo?ioeiee. I.:
Eieeoecaeao. 1957. 510 n.

10. Eeueei A. A., Naaeiaie/ee A. A., Naiaeia Ae. O. Iaoaiaoe/aneee
Aiaeec, O. 1. I.: Ecae-ai Iine. Oi-oa. 1985. 662 n.

11. Nicholson M. M. // J. Am. Chem. Soc. 1957. V.79. ?1. P.7.

12. A?aeieia O. C., Eeaa I. E., Aaeyaneay A. A. // Yeaeo?ioeiey. 1965.
O.1. ?3. N.311.

13. A?aeieia O. C. // Yeaeo?ioeiey. 1966. O.2. ?9. N. 1006.

14. A?aeieia O. C. Eiaa?neiiiay aieueoaiia?iiao?ey oaa?aeuo oac. I.:
Oeiey. 1972. 192 n.

15. A?aeieia O. C., Iaeiai A. ss. Oaa?aeioaciua ?aaeoeee a
yeaeo?iaiaeeoe/aneie oeiee. I.: Oeiey. 1982. 264 n.

PAGE

PAGE 3

Нашли опечатку? Выделите и нажмите CTRL+Enter

Похожие документы
Обсуждение

Оставить комментарий

avatar
  Подписаться  
Уведомление о
Заказать реферат!
UkrReferat.com. Всі права захищені. 2000-2020