.

Контрольная работа

Язык: русский
Формат: реферат
Тип документа: Word Doc
66 611
Скачать документ

План

Газоподобное состояние.

Капиллярные методы определения вязкости.

Первое начало термодинамики. Изохорический процесс. Изобарический
процесс. Теплоемкость.

Классицикация поверхностных явлений.

Методы получения грубодисперсных и мелкодисперсных систем.

Какие дисперсные системы используются и получаются в полиграфическом
производстве.

Почему в офсетном печатном процессе пробельные элементы могут
замасливаться, а печатные элементы не принимают краску?

Литература

Для измерения вызкости пользуются приборами, называемыми вискозиметрами.
Широкое распространены капиллярные вискозиметры, в которых вязкость
определяется по времени вытекания определенного объема жидкости через
капилляр. Один из капиллярных вискозиметров

Термодинамика занимается изучение форм энергии, вне зависимости от
положения исследуемого тела в пространстве. Этот вид энергии участвует
во всех термодинамических процессах, т.е. во взаимопревращениях теплоты
и работы. Впервые эта форма энергии была описана немецкия физиком
Клаузиусом и названа внутренней энергией. Она обозначается буквами: U –
для термодинамической системы в целом; u – для 1 кг массы гомогенной
системы и Um – для 1 моль вещества однородной системы. Внутрення энергия
тела (термодинамической системы) представляет собой сумму энергий
движения и взаимодействия всевозможных частиц, из которых она состоит:
молекул, ионов, атомов, электронов, протонов, нейронов и т.п.

U=Eк + Eп + Eм + Eя

где Ек и Еп – кинетическая и потенциальная энергии частиц тела; Ем –
энергия взаимодействия внутримолекулярных частиц тела; Ея – энергия
взаимодействия внутриядерных частиц тела.

Кинетическая энергия частиц — это энергия их теплового движения
(тепловая энергия).

Потенциальная энергия частиц тела характерезует их взаимное притяжение
(внутреннее давление).

Энергия взаимодействия внутримолекулярных частиц тела характерезует
состав и строение его молекул и изменяется лишь в результате химических
превращений вещества (химическая энергия).

Энергия взаимодействия внутриядерных частиц тела характерезует состав и
строение ядер его атомов и изменяется лишь при ядерных превращениях
вещества.

Свойства внутренней энергии обобщаются в первом законе термодинамики,
известном как закон сохренения энергии: энергия может превращаться из
одной формы в другую, но не может возникать или исчезать: полноя эенргия
изолированной системы постоянна.

В приложении к термодинамическим системам, т.е. к системам,
обменивающимся с окружающей средой энергией в формах теплоты и
механической работы, удобнее следующие варианты формулировок:

Изменение внутренней энергии системы равно теплоте, поступающей в
систему, за вычетом работы, совершенной системой над окружающей средой:

(U = Q – W,

Теплота, поступившая в систему, расходуется на привращение ее внутренней
энергии и совершение работы над окружающей средой:

Q = (U + W

Q – сообщаемая системе теплота;

W – работа, совершаемая системой над окружающей средой.

Теплота, работа и внутренняя энергия “участвуют” в термодинамческих
процессах, т.е. являются термодинамическими функциями. Проявляются эти
свойства в конкретных термодинамических процессах: изохорическом,
изохарическом, изотермическом и адиабатическом.

Изохорический процесс. Если система отделена от окружающей среды жесткой
оболочкой (механическая изоляция), то при изменении всех прочих
параметров состояния (Р, Т и др.) объем ее остается постоянным
(V-const).

Изобарический процесс. Если термодинамическую систему ограничить
невисомой подвижной оболочкой, то при изменении всех прочих параметров
состояния (V, T и др.) давление будет равно давлению окружающей среды и
остается постоянным, если давление в среде не изменяется (Р-const).

Из свойст внутренней энергии следует, что ее изменения в
термодинамическом процессе можно определить с помощью уравнения первого
закона термодинамики. Для этого необходимо уметь определять значение
работы W и теплоты Q изучаемого процесса.

Работу находять, исходя из изменений, происходящих в окружающей среде в
результате рассматриваемого процесса.

W = Fl

где F – сила, действующая на окружающую среду со стороны изучаемой
системы; l – длина пути перемещения границ изучаемой системы.

Замечено, что при нагревании тела становятся теплее. Для выражения
степени нагретости тел было введено понятие температуры, изменение
которой при нагревании предолагалось пропорциональным значению теплоты,
поступающей в исследуемые тела

Q = C (T

где Q – значение полученной исследуемым телом теплоты (тплота процесса);
C- коэффициент пропорциональности; (T – изменение (повышение)
температуры исследуемого тела.

Коэффициент пропорциональности С в данном уравнении был назван
теплоемкостью. Теплоемкость характеризует термодинамический процесс,
протекающий в неизолированной системе и сопровождающийся изменением
температуры системы в результате теплообмена ее с окружающей средой —
теплоемкость термодинамической системы равна теплоте процесса, в
результате которого температура системы изменяется на 1 градус: C = Q /
(T [Дж/К].

5К поверхностным явлениям относятся те эффекты и особенности
поведениявещества, которые наблюдаются на поверхностях раздела фаз.
Причиной поверхностных явлений служит особое состояние молекул в слоях
жидкостей и твердых тел, непосредственно прилегающих к поверхностям
раздела. Эти слои резко отличаются по многим физико-химическим
характеристикам (удельной энергии, плотности, вязкости, электрической
проводимости) от свойст фаз в глубине их объема.

Поверхностное натяжение и межмолекулярные взаимодействия внутри фаз
обуславливают процессы смачивания и растекания капли жидкости на твердой
или жидкой поверхности, а также явления когезии и адгезии.

Смачивание. Малая капля жидкости, помещенная на твердую поверхность,
может принять разную форму: либо близкую к сферической, либо плоскую. В
первом случае твердая поверхность не смачивается жидкостью, во втором —
смачивается.

По числу фаз, участвующих в процессе, различают два типа смачивания: 1)
иммерсионное смачивание, имеющее место при полном погружении твердого
тела в жидкость; в таком случае в смачивании участвуют две фазы:
жидкость и твердое тело; 2) контактное смачивание, протекает с участвием
трех фаз: твердой, жидкой, газообразной.

Рис. 1

Количественной мерой процесса смачивания может служить угол,
образованный каплей и твердой поверхностью. Этот угол наывают краевым
углом смачивани и обозначают (. Значения ( могут меняться в пределах от
0 до 180(. Величину угла смачивания отсчитывают между твердой
поверхностью и касательной, проведенной к поверхности капли в точке
соприкосновения твердой, жидкой и газообразной фаз. Измерение угла
производят со стороны жидкости (см. рис.1).

Растекание. При нанесении на поверхность воды капли нерастворимой в ней
жидкости в одних случаях происходит растекание капли, в других оно
отсутствует. Явление растекания обусловливается поверхностным натяжение
на трех поверхностях раздела: вода-воздух (( вг), вода-капля (( вм) и
капля-воздух (( мг).

Рис. 2

В системе самопроизвольно будет идти тот процесс, который приведет к
минимуму поверхностной энергии Гиббса. Предположим, что ( вг

Нашли опечатку? Выделите и нажмите CTRL+Enter

Похожие документы
Обсуждение

Ответить

Курсовые, Дипломы, Рефераты на заказ в кратчайшие сроки
Заказать реферат!
UkrReferat.com. Всі права захищені. 2000-2020