.

Главные элементы жизни: азот и фосфор

Язык: русский
Формат: реферат
Тип документа: Word Doc
0 1272
Скачать документ

ОТЧЁТ ПО ХИМИИ

ЛЕКЦИЯ №4

ТЕМА:

ГЛАВНЫЕ ЭЛЕМЕНТЫ

ЖИЗНИ:

АЗОТ И ФОСФОР

Масленниковой Инны

9 «Б»
класс

Общая характеристика подгруппы азота.

Подгруппу азота составляют пять элементов: азот, фосфор, сурьма, мышьяк
и висмут. Это элементы V группы периодической системы Д. И. Менделеева
На внешнем энергетическом уровне их элементы имеют по пять электронов –
ns2np3. Поэтому высшая степень окисления этих элементов равна +5, низшая
-3, характерна и +3.

Свойства элементов подгруппы азота

Свойства N P As Sb Bi

Заряд ядра 7 15 33 51 83

Валентные электроны 2s22p3 3s23p3 4s24p3 5s25p3 6s26p3

Энергия ионизации атома, эВ 14,5 19,5 9,8 8,6 7,3

Относительная электроотрицательность 3,07 2,1 2,2 1,87 1,67

Степень окисления в соеденениях +5, +4, +3, +2, +1, -3, -2, -1 +5, +4,
+3, +1, -3, -2 +5, +3, -3 +5, +3, -3 +5, +3, -3

Радиус атома 0,071 0,13 0,15 0,16 0,18

Температура плавления -209,9 44,3 816,9 630,8 271,4

Температура кипения -195,9 279,9 615,9 1634,9 1559,3

С водородом элементы подгруппы азота образуют соединения состава RH3.
Молекулы RH3 имеют пирамидальную форму. В соединениях связи с водородом
более прочные, чем в соответствующих соединениях подгруппы кислорода и
особенно подгруппы галогенов. Поэтому водородные соединения элементов
подгруппы азота в водных растворах не образуют ионов водорода. С
кислородом элементы подгруппы азота образуют оксиды общей формулы R2O3
и R2O5. Оксидам соответствуют кислоты HRO2 и HRO3 (и ортокислоты H3RO4,
кроме азота). В пределах подгруппы характер оксидов изменяется так: N2O3
– кислотный оксид; P4O6 – слабокислотный оксид; As2O3 – амфотерный оксид
с преобладанием кислотных свойств; Sb2O3 – амфотерный оксид с
преобладанием основных свойств; Bi2o3 – основный оксид. Таким образом,
кислотные свойства оксидов состава R2O3 и R2O5 уменьшаются с ростом
порядкового номера элемента. В подгруппе с ростом порядкового номера
неметаллические свойства убывают, а металлические усиливаются. Этим
объясняется уменьшение прочности водородных соединений RH3 от NH3 к
BiH3, а также уменьшение прочности кислородных соединений в обратном
порядке.

Элементы V А-подгруппы открывались в разное время, знания о них
накапливались на протяжении столетий, постепенно увеличиваясь и
углубляясь.

Хронология открытия химических элементов V А-подгруппы

Элемент Дата и авторы открытия Город, страна

N 1772г, Д. Резердорф Эдинбург, Шотландия

P 1669г, Х. Брант Гамбург, Германия

As 1250г, Альберт Великий Больштедт, Германия

Sb Известен с древних времён

Bi Известен с XV века

Степени окисления N и Р и отвечающие им соединения

N-3 NH3, Mg3N2, NH4OH, NH4Cl

N-2 N2H4

N-1 N2H2, NH2OH

N0 N, N2

N+1 N2O

N+2 NO

N+3 N2O3, HNO2, NaNO2, NCl3

N+4 NO2, N2O4

N+5 N2O5, HNO3, KNO3

P-3 PH3

P-2 P2H4

P0 P, P2, P4

P+3 PCl3, P2O3, H3PO3

P+5 PCl5, P2O5, P4O10, HPO3, H3PO4, H4P2O2, Na3PO4, CaHPO4

Азот.

Азот в природе встречается главным образом в свободном состоянии. В
воздухе объёмная доля его составляет 78,09%. Соединения азота в
небольших количествах содержатся в почвах. Азот входит в состав белковых
веществ и многих естественных органических соединений. Общее содержание
азота в земной коре 0,01%. В технике азот получают из жидкого воздуха:
воздух переводят в жидкое состояние, а затем испарением отделяют азот от
менее летучего кислорода (tкип азота -195,8оС, кислорода -183оС).
Полученный таким образом азот содержит примеси благородных газов
(преимущественно аргона). Чистый азот можно получить в лабораторных
условиях, разлагая при нагревании нитрит аммония:

t

NH4OH2=N2 + H2O

Атом азота имеет следующее строение:

Молекула азота образована тройной ковалентной связью атомов: двумя
пи-связями и одной сигма – связью. Молекула азота распадается на атомы
при температуре 2000оС. Жидкий азот хранится в сосуде Дьюра.

Физические свойства азота. Азот – газ без цвета, вкуса и запаха, легче
воздуха, растворимость в воде меньше, чем у кислорода.

Химические свойства азота. Молекула азота состоит из двух атомов, длина
между ними очень мала, Тройная связь и её малая длина делают молекулу
весьма прочной. Этим объясняется малая реакционная способность азота при
обычной температуре.

При комнатной температуре азот непосредственно соединяется с литием:

6Li + N2 = 2Li3N

C другими металлами он реагирует лишь при высоких температурах, образуя
нитриды:

t o
t o

3Сa + N2 = Ca3N2 2Al + N2
= 2AlN

С водородом азот соединяется в присутствии катализатора при высоком
давлении и температур

N2 + 3H3 2NH3

При температуре электрической дуги (3000-4000оС) азот соединяется с
кислородом:

N2 + O2 2NO

Азот образует с водородом несколько прочных соединений, из которых
важнейшим является аммиак. Электронная формула молекулы аммиака такова:

Получение и применение аммиака. В лабораторных условиях аммиак обычно
получают слабым нагреванием смеси хлорида аммония с гашеной известью:

2NH4Cl + Ca (OH)2 = CaCl2 + 2NH3 +
2H2O

Основным промышленным способом получения аммиака является синтез его из
азота и водорода. Реакция экзотермичная и обратимая:

N2 + 3H2 2NH3 + 92кДж

Она протекает только в присутствии катализатора Губчатого железа с
добавками активаторов – оксидов алюминия, калия, кальция, кремния
(иногда и магния)

Физические свойства аммиака. Аммиак – бесцветный газ с характерным
резким запахом, почти в два раза легче воздуха. При увеличении давления
или охлаждении он легко сжимается в бесцветную жидкость. Аммиак хорошо
растворим в воде. Раствор аммиака в воде называется аммиачной водой или
нашатырным спиртом. При кипячении растворённый аммиак улетучивается из
раствора.

Химические свойства аммиака. Большая растворимость аммиака в воде
обусловлена образованием водородных связей между их молекулами.
Гидроксид – ионы обуславливают слабощелочную (их мало) реакцию аммиачной
воды. При взаимодействии гидроксид – ионов с ионами NH4+ снова
образуются молекулы NH3 и H2O, соединённые водородной связью, т. е.
реакция протекает в обратном направлении. Образование ионов аммония и
гидроксид – ионов в аммиачной воде можно выразить уравнением.

NH3 + H2O NH3 . H2O NH4+ + OH—

В аммиачной воде наибольшая часть аммиака содержится в виде молекул NH3,
равновесие смещено в сторону образования аммиака, поэтому она пахнет
аммиаком. Тем не менее водный раствор аммиака по традиции обозначают
формулой NH4OH и называют гидроксидом аммония, а щелочную реакцию
раствора аммиака объясняют как результат диссоциации молекул NH4OH:

NH4OH NH4+ + OH—

А так как в растворе аммиака в воде концентрация гидроксид – ионов
невелика, то гидроксид аммония относится к слабым основаниям.

Аммиак сгорает в кислороде и в воздухе (предварительно подогретом) с
образованием азота и воды:

4NH3 + 3O2 = 2N2 + 6H2O

В присутствии катализатора [например, оксида хрома (III )] реакция
протекает с образованием оксида азота (II) и воды:

Cr2O3

4NH3 + 5O2 = 4NO + 6H2O

Аммиак взаимодействует с галогенами, при этом выделяется азот и
водородное соединение галогена:

2NH3 + 3Br2 = 6HBr + N2

2NH3 + 3Cl2 = 6HCl + N2

Аммиак – сильный восстановитель. При нагревании он восстанавливает оксид
меди (II), а сам окисляется до свободного азота:

3Cu+2O + 2N—3H3 = 3Cu0 + N20 + 3H2O

2N—3 – 6e = N2 1

Cu2+ + 2e = Cu 3

Аммиак взаимодействует с перманганатом калия:

NH3 + KMnO4 = N2 + H2O + MnO2 +KOH

Добавление аммиака изменяет цвет раствора:

Важным химическим свойством аммиака является его взаимодействие с
кислотами с образованием солей аммония. В этом случае к молекуле аммиака
присоединяется ион водорода кислоты, образуя ион аммония, входящей в
состав соли:

H

NH3 + H+Cl– [H N H]Cl

H

Связь между ионами NH4 и Cl ионная, в ионе NH4 четыре связи
ковалентные, причём три из них полярные и одна по донорно –
акцепторном механизму.

Соли аммония.

Соли аммония и аниона кислоты. По строению они аналогичны
соответствующим солям однозарядных ионов металлов. Соли аммония
получаются пи взаимодействии аммиака или его водных растворов с
кислотами. Например:

NH3 + HNO3 = NH4NO3

NH3. H2O + HNO3 = NH4NO3 + H2O

Они проявляют общие свойства солей, т.е. взаимодействуют с растворами
щелочей, кислот и других солей:

(NH4)Cl + NaOH = NaCl + H2O + NH3

КОНЦ.

2NH4Cl + H2SO4 = (NH4)2SO4 + 2HCl

(NH4)2SO4 + BaCl2 = 2NH4Cl + BaSO4

Все аммонийные соли при нагревании разлагаются или возгоняются,
например:

(NH4)2CO3 = 2NH3 + H2O CO2

NH4NO2 =
2H2O + N2

NH4Cl NH3 + HCl

(NH4)2Cr2O7 = Cr2O3 + 4H2O + N2

Качественная реакция на ион аммония. Очень важным свойством солей
аммония является их взаимодействие с растворами щелочей. Этой реакцией
обнаруживают соли аммония (ион аммония) по запаху выделяющегося аммиака
или по появлению синего окрашивания влажной лакмусовой бумажки:

NH4+ + OH H2O + NH3

Реакцию проводят так: в пробирку с испытуемой солью или раствором вводят
раствор щелочи и смесь осторожно нагревают. В случае присутствия иона
аммония выделятся аммиак.

Оксиды азота.

Азот образует шесть кислородных соединений, в которых проявляет степени
окисления от +1 до +5: N2+1O, N+2O, N2+3O3, N+4O2, N2+4O4, N2+5O5. При
непосредственном соединении азота с кислорода образуется только оксид
азота (II) NO, другие оксиды получают косвенным путем. N2O и NO –
несолеобразующие оксиды, остальные – солеобразующие. Из всех оксидов
азота наибольшее значение имеют оксиды азота (II) и азота (IV) как
промежуточные продукты в производстве азотной кислоты.

Оксид азота (II) NO – бесцветный газ, плох растворимый в воде (его можно
собирать в цилиндре над водой). Оксид азота (II) соединяется с
кислородом воздуха, образуя бурый газ – оксид азота (IV):

2NO +O2 = 2NO2

В лабораторных условиях оксид азота (II) получают при взаимодействии
разбавленной азотной кислоты и меди:

3Cu + 8HNO3 = 3Cu(NO3)2 + 4H2O + 2NO

Оксид азота (II) получают также окислением аммиака кислородом воздуха в
присутствии катализатора платины. Он постоянно образуется в воздухе во
время грозы под действием электрических зарядов.

Оксид азота (IV) NO – газ бурого цвета со специфическим запахом, тяжелее
воздуха, ядовит, раздражает дыхательные пути. В лабораторных условиях
NO2 получают при взаимодействии концентрированной азотной кислоты и
меди:

Cu + 4HNO3 = Cu(NO3)2 + H2O + 2NO2

или при прокаливании кристаллического нитрата свинца:

2Pb(NO3)2 = 2PbO + 4NO2 + O2

При взаимодействии оксида азота (IV) с водой образуется азотная и
азотистая кислоты:

2NO2 + H2O = HNO3 + HNO2

HNO2 малоустойчива, особенно при нагревании. Поэтому при растворении NO2
в теплой воде образуется азотная кислота и оксид азота (II):

3NO2 + H2O =2HNO3 + NO

В избытке образуется только азотная кислота:

4NO2 + 2H2O + O2 = 4HNO3

Оксид азота (IV) – сильный окислитель; уголь, фосфор, сера горят в нем,
а оксид серы (IV) окисляется до оксида серы (VI).

Азотная кислота.

Получение азотной кислоты. В лабораторных условиях азотная кислота
получается из её солей действием концентрированной серной кислоты:

KNO3 + H2SO4 = HNO3 + KHSO4

Реакция протекает при слабом нагревании (сильное нагревание разлагает
HNO3).

В промышленности азотная кислота получается каталитическим окислением
аммиака, который в свою очередь, образуется как соединения водорода и
азота воздуха. Весь процесс получения азотной кислоты можно разбить на
три этапа:

Окисление аммиака на платиновом катализаторе до NO:

4NH3 + 5O2 = 4NO +6H2O

Окисление кислородом воздуха NO до NO2:

2NO + O2 =2NO2

Поглощение NO2 водой в присутствии избытка кислорода:

4NO2 + 2H2O + O2 = 4HNO3

Физические свойства. Азотная кислота – бесцветная жидкость с едким
запахом. Она гигроскопична, «дымит» на воздухе, т. к. пары её с влагой
воздуха образуют капли тумана. Смешивается с водой в любых соотношениях.
Кипит при 86оС.

Химические свойства. В HNO3 валентность азота равна 4, степень окисления
+5

Разбавленная азотная кислота проявляет все свойства кислот. Она
относится к сильным кислотам. В водных растворах диссоциирует:

HNO3 H+ +NO3—

Под действием теплоты и на свету частично разлагается:

4HNO3 = 4NO2 + 2H2 O + O2

Поэтому хранят её в прохладном месте.

Важнейшее химическое свойство азотной кислоты состоит в том, что она
является сильным окислителем и взаимодействует почти со всеми металлами.

Применение. Большие количества её расходуются на приготовление азотных
удобрений, взрывчатых веществ, лекарственных веществ, красителей,
пластических масс, искусственных волокон других материалов. Дымящая
азотная применяется в ракетной технике в качестве окислителя ракетного
топлива.

При взаимодействии азотной кислоты, с металлами водород, как правило, не
выделяется: он окисляется, образуя воду. Кислота же, в зависимости от
концентрации и активности металла, может восстанавливается до
соединений:

+5 +4 +3 +2 +1 0
-3 -3

HNO3 —- NO2 —-HNO2 —- NO —- N2O —-N2 —- NH3(NH4NO3)

Образуется также соль азотной кислоты. От концентрации азотной кислоты
зависит и продукт, образовавшийся в результате реакции:

Концентрированная азотная кислота не действует на железо, хром,
алюминий, золото, платину и тантал, при взаимодействии с другими
тяжелыми металлами образуется оксид азота (IV), при взаимодействии с
щелочными и щелочно – земельными металлами образуется оксид азота (I).

Разбавленная азотная кислота при взаимодействии с щелочно – земельными
металлами, а также с цинком и железом с образованием NH3(NH4NO3). При
взаимодействии с тяжелыми металлами образуется оксид азота
(II).Например,

Конц.

Ag + 2HNO3 = AgNO3 + NO2 H2O

Разб.

3Ag + 4HNO3 = 3AgNO3 + NO + 2H2O

Достаточно активный металл цинк в зависимости от концентрации азотной
кислоты может восстанавливать ее до оксида азота (I) N2O, свободного
азота N2 и даже до аммиака NH3, который с избытком азотной кислоты дает
нитрат аммония NH4NO3. В последнем случае уравнение реакции следует
записать так:

4Zn + 10HNO3 (очень разб.) = 4Zn(NO3)2 + NH4NO3 + 3H2O

Азотная кислота взаимодействует со многими неметаллами, окисляя их до
соответствующих кислот:

3P + 5HNO3 + H2O = 3H3PO4 + 5NO

C + 4HNO3 = CO2 + H2O + 4NO2

Одноосновная кислота образует только соли, называемые нитратами. Они
получаются при действии ее на металлы, их оксиды и гидроксиды. Нитраты
натрия, калия, аммония и кальция называются селитрами: NaNO3 – натриевая
селитра, KNO3 – калийная селитра, NH4NO3 – аммиачная селитра, Ca(NO3)2 –
кальциевая селитра. Селитры используются главным образом как минеральные
азотные удобрения. Кроме того, KNO3 применяется для приготовления
черного пороха.

Фосфор.

Фосфор – аналог азота, т. к. электронная конфигурация валентных
электронов, как и у азота, s2p3. Однако по сравнению с атомом азота атом
фосфора характеризуется меньшей энергией ионизации и имеет больший
радиус. Это означает, что неметаллические признаки у фосфора выражены
слабее, чем у азота. Поэтому для фосфора реже встречаются степень
окисления -3 и чаще +5. Мало характерны и другие степени окисления.

Нахождение в природе. Общее содержание фосфора в земной коре составляет
0,08%. В природе фосфор встречается только в виде соединений; важнейшее
из них – фосфат кальция – минерал апатит.

Физические свойства. Фосфор, в отличие от азота имеет несколько
аллотропных модификаций: белый, красный, черный и др.

Белый фосфор – бесцветное и очень ядовитое вещество. Получается
конденсацией паров фосфора. Не растворяется в воде, но хорошо
растворяется в сероуглероде. При длительном слабом нагревании белый
фосфор переходит в красный.

Красный фосфор – порошок красно – бурого цвета, не ядовит, нерастворим в
воде и сероуглероде, представляет смесь нескольких аллотропных
модификаций, которые отличаются друг от друга цветом и некоторыми
свойствами.

Черный фосфор по внешнему виду похож на графит, жирный на ощупь,
обладает полупроводниковыми свойствами. Получается длительным
нагреванием белого фосфора при очень большом давлении.

Химические свойства. В химическом отношении белый фосфор сильно
отличается от красного. Так, белый фосфор легко окисляется и
самовоспламеняется на воздухе, поэтому его хранят под водой. Красный
фосфор не воспламеняется на воздухе, но воспламеняется при нагревании
свыше 240оС. При окислении белый фосфор светится в темноте – происходит
непосредственное превращение химической энергии в световую. В жидком и
растворенном состоянии, а также в парах при температуре ниже 800оС
фосфор состоит из молекул Р4. При нагревании выше 800оС молекулы
диссоциируют:

Р4 2Р2. Последние при температуре выше 2000оС распадаются на атомы:

Р2 2Р. Атомы фосфора могут объединяться в молекулы Р2, Р4 и
полимерные вещества.

Фосфор соединяется со многими простыми веществами – кислородом,
галогенами, серой и некоторыми металлами, проявляя окислительные и
восстановительные свойства:

2P + 3S =P2S3 2P + 3Ca = Ca3P2

Реакции с белым фосфором идут легче, чем с красным. Соединения фосфора с
металлами называются фосфидами; они легко разлагаются водой с
образованием фосфина РН3 – очень ядовитого газа с чесночным запахом:

Ca3P2 + 6H2O = 3Ca(OH)2 + 2PH3

По аналогии с NH3 фосфин способен к реакциям присоединения:

РН3 + НI = РН4I

Оксиды фосфора.

Оксид фосфора (III) Р2О3 – воскообразная кристаллическая масса,
плавящаяся при 22,5оС. Получается сжиганием фосфора при недостатке
кислорода. Сильный восстановитель. Не ядовит.

Оксид фосфора (V) Р2О5 – белый гигроскопичный порошок. Получается при
горении фосфора в избытке воздуха или кислорода. Он очень энергично
соединяется с водой, а также отнимает воду от др. соединений.
Применяется как осушитель для жидкостей и газов.

Оксиды и все кислородные соединения фосфора намного прочнее аналогичных
соединений азота, что следует объяснить ослаблением неметаллических
свойств у фосфора по сравнению с азотом.

Фосфорные кислоты.

Оксид фосфора (V) взаимодействуя с водой, образует кислоту НРО3,
последняя при кипячении с избытком воды образует фосфорную кислоту
Н3РО4, при нагревании Н3РО4, образуется дифосфорная кислота Н4Р2О7.

3Р4О10 + 6Н2О = 4Н3(РО3)3

Н3(РО3)3 + 3Н2О = 3Н3РО4

2Н3РО4 = Н4Р2О7 + Н2О

Наибольшее практическое значение имеет фосфорная кислота, т. к. её соли
– фосфаты – используются в качестве удобрений.

Фосфорная кислота – белое твердое вещество. С водой смешивается в любых
соотношениях. В отличие от азотной кислоты не является окислителем и не
разлагается при нагревании, что объясняется наибольшей устойчивостью
степени окисления +5 из всех возможных для фосфора.

Азот и фосфор – это главные элементы жизни, они находятся в
человеческом организме и необходимы для роста и питания каждому.

Похожие документы
Обсуждение
    Заказать реферат
    UkrReferat.com. Всі права захищені. 2000-2019