IAOe?IIAEUeIA AEAAeAIIss IAOE OE?A?IE

?inoeooo iaoaiaoeee

I?EEA?IAONUeEEE ss?aia Aiaoie?eiae/

OAeE 517.9

NEIIEAEOE*IEE AIAE?C

?IOAA?AEUeIEO IIIAIAEAe?A Oe?EEII ?IOAA?IAIEO

AAI?EUeOIIIAEO NENOAI OA ?O AAe?AAAOE*IEO CAO?AIUe

01.01.02 — aeeoa?aioe?aeuei? ??aiyiiy

A a o i ? a o a ? a o

aeena?oaoe?? ia caeiaoooy iaoeiaiai nooiaiy

eaiaeeaeaoa o?ceei-iaoaiaoe/ieo iaoe

Ee?a — 1999

Aeena?oaoe??th ? ?oeiien.

?iaioa aeeiiaia o a?aeae?e? cae/aeieo aeeoa?aioe?aeueieo ??aiyiue
Iinoeoooo iaoaiaoeee Iaoe?iiaeueii? aeaaeaii? iaoe Oe?a?ie.

Iaoeiaee ea??aiee: aeaaeai?e IAI Oe?aie

aeieoi?
oc.-iao. iaoe, i?ioani?

NAIIEEAIEI Aiaoie?e
Ieoaeeiae/,

inoeooo iaoaiaoeee IAI
Oe?aie, aee?aeoi?

Io?oe?ei? aeieoi? o?c.-iao. iaoe,

iiiiaioe: /eai-ei?aniiiaeaio IAI Oe?a?ie

IA?ANOTHE Ieeiea
Ieaen?eiae/

Ee?anueeee oi?aa?neoao
?iai?

Oa?ana Oaa/aiea,

aeaeai
iaoai?ei—iaoaiaoe/iiai oaeoeueoaoo;

aeieoi?
oiceei-iaoaiaoe/ieo iaoe, i?ioani?

IAO?EOEI ?iiai ?aaiiae/

*a?i?aaoeueeee aea?aeaaiee

oi?aa?neoao ?iai? TH??y
Oaaeueeiae/a

caa?aeoth/ee

eaoaae?ith i?eeeaaeii?
iaoaiaoeee oa iaoai?ee

I?ia?aeia onoaiiaa: Iaeanueeee aea?aeaaiee oi?aa?neoao ?iai?
?.?.Ia/ieeiaa,

eaoaae?a iioeiaeueiiai oi?aae?iiy oa aeiiii?/ii? e?aa?iaoeee

Caoeno a?aeaoaeaoueny “_15_” _/a?aiy_1998 ?. i wmetafile8?
??????????????? ???????????yyy????.????1??????
??????? aa???&??yyyy?????Ay?y ™ ???&? ?MathType??
????u?th??????ia can?aeaii? niaoe?ae?ciaaii? a/aii? ?aaee Ae.26.206.02
i?e ?inoeooo? iaoaiaoeee IAI Oe?a?ie ca aae?anith:

252601 Ee?a 4, INI, aoe, Oa?auaie?anueea 3.

C aeena?oaoe??th iiaeia iciaeiieoeny o a?ae?ioaoe? ?inoeoooo iaoaiaoeee
IAI Oe?a?ie.

Aaoi?aoa?ao ?ic?neaii “ _12 ” o?aaiy____1999 ?.

O/aiee nae?aoa?

niaoe?ae?ciaaii? a/aii? ?aaee

aeieoi? o?c.-iao. iaoe A.I.
Iaetho

CAAAEUeIA

OA?AEOA?ENOEEA ?IAIOE

Aeooaeuei?noue oaie. A oai??? aeeiai?/ieo nenoai ia aeeoa?aioe?eiaaieo
iiiaiaeaeao aai?eueoiiia? nenoaie, ye a?aeiii, aeae?eythoueny nai?th
niaoe?aeueiith no?oeoo?ith. Nooue ?? a oiio, ui iiiaiaeae, ia yeiio
caaeaia aai?eueoiiiaa nenoaia, ? neiieaeoe/iei, cie?aia
ia?ii-aei??iei, ? ?? a?aeiia?aeia aaeoi?ia iiea ii?iaeaeo?oueny
aeayeith iaeiicia/iith ooieoe??th, yea iaceaa?oueny ooieoe??th
Aai?eueoiia. Iayai?noue oaei? aeiaeaoeiai? no?oeoo?e, ye aoei
iieacaii ua a i?aoeyo eeanee?a E?oa?eey, Ioanniia, Eaa?aiaea, sseia?,
Aai?eueoiia oa ?ioeo, i?ecaiaeeoue aei oe?ieeo iiaeeeainoae ?o
aeine?aeaeaiiy, aeei?enoiaoth/e oae? iaoaiaoe/i? oai??? ye oai??y a?oi
? aeaaa? E?, aeeoa?aioe?aeueio oa aeaaa?a?/io aaiiao??? ? oiiieia?th, a
a inoaii? ?iee — ? iaoiaee ooieoe?iiaeueiiai aiae?co ? oai???
iia?aoi??a. Oae ye iniiaieie ieoaiiyie a oai??? aeeiai?/ieo nenoai
? ?o ?ioaa?iai?noue oa aeiaaeuei? aeanoeaino? (cie?aia ye?ni?) i?a?o,
noiniaii ?ioaa?iaiino? aai?eueoiiiaeo nenoai aoa anoaiiaeaiee aeineoue
aoaeoeaiee e?eoa??e iiaii? ?ioaa?iaiino? a eaaae?aoo?ao E?oa?eey, ui
ni?eya ?icaeoeo aoaeoeaieo iaoiae?a ?ioaa?oaaiiy aai?eueoiiiaeo
nenoai. Iniaeeai aoaeoii na?aae ieo aeae?ey?oueny iaoiae
Aai?eueoiia-sseia? eaiii?/ieo ia?aoai?aiue, nooo?ai ?icaeiooee a
i?aoeyo Ioaiea?a ? Ea?oaia, a a inoaii? aeanyoee?ooy — A.A?iieueaeii ?
A.Eiceiaei. O aeiaaeeo oe?eeii ?ioaa?iaii? aai?eueoiiiai? nenoaie
ia neiieaeoe/iiio iiiaiaeae? no?oeoo?a ?? i?a?o aoaeoeaii iieno?oueny
a?aeiiith oai?aiith E?oa?eey-A?iieueaea. Aiia, cie?aia, noaa?aeaeo?,
ui an? i?a?oe a caaaeueiiio iieiaeaii? cina?aaeaeai? ia ?iaa??aioiiio
i?aeiiiaiaeae? (oae caaiiio eaa?aiaeaaiio i?aeiiiaiaeae?), yeee i?e
oiia? eiai eiiiaeoiino? aeeoaiii?oiee oi?ia? iieiaeiii? ?ici??iino?
aaciaiai neiieaeoe/iiai iiiaiaeaeo, i?e/iio aaiethoe?y ia oeueiio oi??
? eiai e?i?eiith eaac?ia??iaee/iith iaiioeith. Ioaea, aanue oaciaee
i?ino??, oiaoi aeo?aeiee neiieaeoe/iee iiiaiaeae, ? ?icoa?iaaiee
oi?i?aeaeueii-oeee?iae?e/ieie iaeanoyie, a?aieoeyie yeeo ? oae caai?
naia?ao?eni? iiiaiaeaee, ui iia’ycothoue i?ae niaith iniaeea? oi/ee
a?ia?aie?/iiai oeio. Oae ye a aaaaoueio i?aeoe/ieo canoinoaaiiyo
cono??/athoueny ia /enoi oe?eeii ?ioaa?iai? aai?eueoiiia? nenoaie, a
?o iaai? iae? cao?aiiy, i?e/iio iaaaoiiiii? (caeaaei? a?ae /ano), oi
aeaaii aeieeea i?iaeaia ?ic?iaee iaoiae?a ?o aeine?aeaeaiiy, ye? a
aeaaaee ye aiae?oe/io, oae ? ye?nio ea?oeio aeaoi?iaoe?e a?aeiia?aeieo
iacao?aieo ?iaa??aioieo ?ioaa?aeueieo iiiaiaeae?a, cie?aia ?nioaaiiy
?iaa??aioieo aeaoi?iaoe?e a?aeiia?aeieo oi?i?aeaeueieo iiiaiaeae?a.
Aeey aeiaaeeo neaaeeo aaeeoeaieo cao?aiue ooieoe?? Aai?eueoiia ca
inoaii? aeanyoee?ooy aoea ?icaeiooa aeineoue iiaia oai??y aeaoi?iaoe?e
oi?i?aeaeueieo iiiaiaeae?a aai?eueoiiiaeo nenoai a i?aoeyo
I.Aiaiethaiaa, TH.Ieo?iiieuenueeiai, A.Naiieeaiea, A.Eieiiai?iaa,
A.A?iieueaea oa TH.Iica?a. Iniaeeaino? i?a?o oaeeo nenoai a ieie?
iniaeeaeo oi/ie, cie?aia ?o oaioe/iee oa?aeoa?, aoee aeine?aeaeai? a
i?aoeyo A.Ioaiea?a, Aeae.A??eaioa, a a inoaii? aeanyoee?ooy — a
i?aoeyo N.Niaeea (ye?nia oai??y), oa A.Iaeuei?eiaa (aiae?oe/i?
e?eoa??? yaeua ?icuaieaiiy naia?ao?enieo iiiaiaeae?a, ia?aaeaa/aiiai
Ioaiea?a). sseui ae oe?eeii ?ioaa?iaia aeeiai?/ia nenoaia
Aai?eueoiia i?aeaeaia o?eueee iia?eueiiio cao?aiith (a?aeiinii iaeiai
ia?aiao?a), ui ia? ua iacao «aae?aaaoe/ia cao?aiiy», oi aeey eaiii?/ii
caaeaii? nenoaie a ci?iieo «ae?y-eoo» ?nioaaiiy ?iaa??aioii?
aeaoi?iaoe?? oi?i?aeaeueiiai iiiaiaeaeo anoaiiaeaii eeoa aeey
iaeii/anoioiiai ?ooo ? aeey /anoeiaeo aeiaaee?a nenoai — aeey
aeai/anoioiiai. C oe??th i?iaeaiith o?nii iia’ycaia oae caaia caaea/a
i?i ?nioaaiiy aae?aaaoe/ieo ?iaa??aio?a, ye? ciaoiaeyoue oe?iea
canoinoaaiiy a aaaaoueio oaoi?/ieo aeine?aeaeaiiyo. Ua a?eueoa
oneeaaeith?oueny caaea/a aeey oe?eeii ?ioaa?iaieo aai?eueoiiiaeo
nenoai, caaeaieo ia eaiii?/ii, a a aeo?aeieo oaciaeo ci?iieo
neiieaeoe/iiai iiiaiaeaeo. Oiae? aeieea? aeiaeaoeiaa iao?ea?aeueia
caaea/a aiae?oe/iiai iieno a?aeia?aaeaiiy aeeaaeaiiy ?iaa??aioiiai
oi?i?aeiiai i?aeiiiaiaeaeo a aaciaee neiieaeoe/iee iiiaiaeae, ia yeiio
caaeaia aai?eueoiiiaa nenoaia. Aeey niaoe?aeueiiai, aea aeineoue
oe?ieiai, eeano aeaaa?a?/ii-iie?iii?aeueieo aai?eueoiiiaeo nenoai oey
i?iaeaia iiaea aooe ?ica’ycaia aiae?oe/ii, ui aea? iiaeeea?noue
canoinoaaoe cia/ii aoaeoeai?oa aeanoeaino? iaoiaeo eaiii?/ieo
ia?aoai?aiue Ioaiea?a-Ea?oaia aei a?aeiia?aeii? iia?eueii-cao?aii?
nenoaie a ci?iieo «ae?y-eoo» a ?aieao iaoiaeo ona?aaeiaiiy
I.Aiaiethaiaa oa EAI-oai???. Aiae?c oe??? caaea/? aeey e?eueeio
eiie?aoieo aai?eueoiiiaeo nenoai oeio Oaiii-Oaeeana oa Oieea?a-Ieaiea
iieacaa, ui aae?aaaoe/i? ?iaa??aioe aeey iia?eueii-cao?aieo
aeai/anoioieo oi?i?aeaeueieo iiiaiaeae?a oaae iiaeooue ?nioaaoe i?e
aeiaeaoeiaeo oiiaao ia oa?aeoa? cao?aiiy. Oae, ca?aeii c Ioaiea?a,
?nio? iiaeeea?noue aiae?oe/iiai iieno eaa?aiaeaaeo neaaeicao?aieo
aai?eueoiiiaeo nenoai. A.Ioaiea?a aoei anoaiiaeaii e?eoa??e
?icuaieaiiy naia?ao?enieo iiiaiaeae?a a ieie? iniaeeaeo oi/ie,
iia’ycaieo aaoa?iee?i?/ii. A.Iaeuei?eia cai?iiiioaaa aiae?oe/iee
e?eoa??e, ui iieno? o?ainaa?naeueia ?icuaieaiiy naia?ao?enieo
iiiaiaeae?a aeey oaeeo nenoai. Aeey aeiaaeeo iia?eueii cao?aieo
aai?eueoiiiaeo nenoai iaoiae Iaeuei?eiaa aaciina?aaeiuei ia
aaeaioo?oueny, oi/a aoee aeaye? ni?iae neiino?othaaoe aiaeia oae
caaii? oa?aeoa?enoe/ii? ooieoe?? Iaeuei?eiaa, yea aea? iaaiee e?eoa??e
o?ainaa?naeueiiai ?icuaieaiiy naia?ao?enieo iiiaiaeae?a, aeinoaoi?noue
yeiai aeiaaa? aeiaeaoeiaiai aiae?co. A?aoiaoth/e ?acoeueoao
Ioaiea?a, aeieeea caaea/a ocaaaeueiaiiy i?aeoiaeo Ioaiea?a aei
iiaoaeiae a?aeiia?aeiiai e?eoa??th o?ainaa?naeueiiai ?icuaieaiiy
naia?ao?enieo iiiaiaeae?a oa anoaiiaeaiiy eiai aea?aaeaioiino?
e?eoa??th Iaeuei?eiaa. Aacoth/enue ia anoaiiaeai?e aea?aaeaioiino?,
aaeaeinue noi?ioethaaoe a?aeiia?aeiee e?eoa??e Ioaiea?a-Iaeuei?eiaa
o?ainaa?naeueiiai ?icuaieaiiy naia?ao?enieo iiiaiaeae?a a ieie?
iniaeeaeo oi/ie aeey aae?aaaoe/ii cao?aieo aai?eueoiiiaeo nenoai.
sse a?aeiii c ?acoeueoao?a aeine?aeaeaiue oe?eeii ?ioaa?iaieo
aai?eueoiiiaeo nenoai ia aeaaeeeo ooieoe?iiaeueieo iiiaiaeaeao, aiie
aeiioneathoue a aaaaoueio aeiaaeeao ne?i/aiiiaei??i? ?iaa??aioi?
neiieaeoe/i? i?aeiiiaiaeaee, ?aaeoeoe?y ia ye? ? aea?aaeaioiith iaaiei
oe?eeii ?ioaa?iaiei aai?eueoiiiaei nenoaiai. Cie?aia oaeith
aeanoea?noth aieiae?thoue oae caai? oe?eeii ?ioaa?iai? ca Eaenii
aai?eueoiiia? nenoaie ia ooieoe?iiaeueieo iiiaiaeaeao.
A?oiooth/enue ia aeeoa?aioe?aeueii-aaiiao?e/i?e oai??? Ea?oaia
?nioaaiiy oae caaieo aaiiao?e/ieo ia’?eo?a, o?aiceoeaii ?iaa??aioieo
a?aeiinii ae?? iaaii? a?oie E?, iinoaea caaea/a iieno iaaiiai eeano
?ioaa?iaieo ca Eaenii aeeiai?/ieo nenoai ye iaaieo aaiiao?e/ieo
ia’?eo?a a nain? Ea?oaia, ?aae?ciaaieo ca aeiiiiiaith ?ioaa?aeueiiai
i?aeiiiaiaeaeo aeayeiai oe?eeii ?ioaa?iaiiai ?aeaaeo a aeaaa?? A?anniaia
aeeoa?aioe?aeueieo oi?i ia anioe?eiaaiiio c aeeiai?/iith nenoaiith
aeaeao-iiiaiaeae?. ?ica’ycie oe??? caaea/? aeaa iiaeeea?noue
aoaeoaaoe aoaeoeaii oae caai? ??aiyiiy ia?aeaeueiiai ia?aianaiiy aeey
anioe?eiaaii? ca’yciino? ia a?aeiia?aeiiio aieiaiiio ?icoa?oaaii? oa
?ioa?i?aooaaoe inoaii? ye i?aaenoaaeaiiy oeio Eaena aeey aeo?aeii?
aeeiai?/ii? nenoaie ia aeaeao-iiiaiaeae?. A canoinoaaii? oeeo
?acoeueoao?a aei aeeiai?/ii? nenoaie Ath?aa?na anoaiiaeaii ?? iiaa
ianoaiaea?oia iao?e/ia i?aaenoaaeaiiy oeio Eaena, yea aeaei
iiaeeea?noue iiaoaeoaaoe iane?i/aiio ???a?o?th ?? ne?i/aiiiaei??ieo
?aaeoeoe?e ia niaoe?aeuei? iaeieaeuei? ne?i/aiiiaei??i? ?iaa??aioi?
i?aeiiiaiaeaee oa aeiaanoe ?o iiaio ?ioaa?iai?noue ca E?oa?eeai.
Aeey aaaaoueio oaeeo aeeiai?/ieo nenoai aoea anoaiiaeaia
?ioaa?iai?noue ca Eaenii, aacoth/enue ia iaoiae? iiaoaeiae oae caaiiai
aea?aa??aioiiai a?aeia?aaeaiiy iiiaioo ia iao?e/ieo iiiaiaeaeao.
Iiaoaeiaa oeueiai a?aeia?aaeaiiy aeey ?aaeoeiaaieo iioie?a aeeiai?/ii?
nenoaie Ath?aa?na oa aai?eueoiiiaeo iioie?a ia iiiaiaeaeao A?anniaia
oaae noaiiaeoue aaaeeeao caaea/o oai??? aai?eueoiiiaeo aeeiai?/ieo
nenoai ia iiiaiaeaeao iao?ea?aeueii? oiiieia?/ii? no?oeoo?e.

Ca’ycie ?iaioe c iaoeiaeie i?ia?aiaie, ieaiaie, oaiaie. ?iaioa
i?iaiaeeeanue ca?aeii c caaaeueiei ieaiii aeine?aeaeaiue a?aeae?eo
cae/aeieo aeeoa?aioe?aeueieo ??aiyiue ?inoeoooo iaoaiaoeee IAI Oe?aie.

Iaoa ? caaea/? aeine?aeaeaiiy. Iaoith aeaii? ?iaioe ? ?ic?iaea
aoaeoeaiiai aiae?oe/iiai iaoiaeo iiaoaeiae a?aeia?aaeaiiy aeeaaeaiiy
?iaa??aioieo oi?i?aeaeueieo iiiaiaeae?a aeey oe?eeii ?ioaa?iaieo
aeaaa?a?/ii-iie?iii?aeueieo aai?eueoiiiaeo nenoai, aiae?c ?nioaaiiy
aae?aaaoe/ieo ?iaa??aio?a aeey oaeeo aai?eueoiiiaeo nenoai oa ?o
iiaoaeiaa, ocaaaeueiaiiy i?aeoiaeo Ioaiea?a aeine?aeaeaiiy
aeaoi?iaoe?e eaa?aiaeaaeo iiiaiaeae?a neaaeicao?aieo aai?eueoiiiaeo
nenoai a ieie? iniaeeaeo oi/ie oa anoaiiaeaiiy e?eoa??th
o?ainaa?naeueiiai ?icuaieaiiy naia?ao?enieo iiiaiaeae?a, aea?aaeaioiiio
e?eoa??th Iaeuei?eiaa, ocaaaeueiaiiy aeeoa?aioe?aeueii-aaiiao?e/ii?
oai??? Ea?oaia aeine?aeaeaiiy aaiiao?e/ieo ia’?eo?a,
o?aiceoeaii-?iaa??aioieo a?aeiinii ae?? a?oi E? o aeiaaeeo a?oi E?,
caaeaieo iayaii ca aeiiiiiaith caieiooeo ?aeaae?a a aeaaa?? A?anniaia
aeeoa?aioe?aeueieo oi?i ia i?aeiiiaiaeae? aeayeiai aeaeao-iiiaiaeaeo.

Iaoeiaa iiaecia iaea?aeaieo ?acoeueoao?a. Iniiaieie ?acoeueoaoaie, ye?
aecia/athoue iaoeiao iiaecio oa aeiinyoueny ia caoeno, ? oae?:

n ?ic?iaeaii aoaeoeaiee aiae?oe/iee iaoiae iiaoaeiae a?aeia?aaeaiiy
aeeaaeaiiy ?iaa??aioieo iiiaiaeae?a aeey oe?eeii ?ioaa?iaieo
aeaaa?a?/ii-iie?iii?aeueieo nenoai, i?iaaaeaii aeine?aeaeaiiy
?nioaaiiy aae?aaaoe/ieo ?iaa??aio?a aeey aae?aaaoe/ii-cao?aieo
aai?eueoiiiaeo nenoai.

n — Ocaaaeueiaii i?aeo?ae Ioaiea?a aeine?aeaeaiiy aeaoi?iaoe?e
eaa?aiaeaaeo iiiaiaeae?a neaaei-cao?aieo aai?eueoiiiaeo nenoai a ieie?
iniaeeaeo oi/ie oa anoaiiaeaii e?eoa??e o?ainaa?naeueiiai ?icuaieaiiy
naia?ao?enieo iiiaiaeae?a.

n — Ocaaaeueiaii aeeoa?aioe?aeueii-aaiiao?e/iee i?aeo?ae Ea?oaia
aeine?aeaeaiiy aaiiao?e/ieo ia’?eo?a, o?aiceoeaii-?iaa??aioieo
a?aeiinii ae?? a?oi E? o aeiaaeeo a?oi E?, caaeaieo iayaii ca
aeiiiiiaith caieiooeo ?aeaae?a a aeaaa?? A?anniaia aeeoa?aioe?aeueieo
oi?i ia i?aeiiiaiaeae? aeayeiai aeaeao-iiiaiaeaeo.

n — Iiaoaeiaaii ??aiyiiy ia?aeaeueiiai ia?aianaiiy ca’yciino? ia
anioe?eiaaiiio ?icoa?oaaii? aei aeaeao-iiiaiaeaeo aeey aeeiai?/ii?
nenoaie Ath?aa?na oa i?iaaaeaii eiai ?ioa?i?aoaoe?th ye iao?e/iiai
cia?aaeaiiy oeio Eaena, a oaeiae aeine?aeaeaii ???a?o?th
ne?i/aiiiaei??ieo ?aaeoeoe?e aeeiai?/ii? nenoaie Ath?aa?na ?
anoaiiaeaii ?o aai?eueoiiia?noue oa iiaio ?ioaa?iai?noue.

I?aeoe/ia cia/aiiy io?eiaieo ?acoeueoao?a. Io?eiai? ?acoeueoaoe oa
cai?iiiiiaai? i?aeoiaee ocaaaeueiththoue oa aeiiiaiththoue
a?aeiia?aei? aeine?aeaeaiiy iae?i?eieo aeeiai?/ieo nenoai. Io?eiai?
?acoeueoaoe iiaeooue aooe canoiniaai? aeey aeine?aeaeaiiy eiie?aoieo
oe?eeii ?ioaa?iaieo aeaaa?a?/ii-iie?iii?aeueieo aai?eueoiiiaeo nenoai.

Iniaenoee aianie caeiaoaa/a. Aecia/aiiy caaaeueiiai ieaio oa iai?yiie
aeine?aeaeaiue, iinoaiiaea caaea/ iaeaaeaoue iaoeiaiio ea??aieeo —
A.I. Naiieeaieo. Oi?ioethaaiiy ? aeiaaaeaiiy anio ?acoeueoaoia
aeena?oaoei?, yei aeiinyoueny ia caoeno, i?iaaaeaii iniaenoi aaoi?ii.
Ni?aaaoi?ai iaeaaeaoue iinoaiiaee i?iaeai oa aecia/aiiy caaaeueii? noaie
aeine?aeaeaiue, a oaeiae iaaiai?aiiy io?eiaieo ?acoeueoao?a.

Ai?iaaoeiy ?acoeueoao?a aeena?oaoe??. ?acoeueoaoe aeena?oaoeieii?
?iaioe aeiiiaiaeaeenue i iaaiai?thaaeenue ia naiiia?ao aiaeaeieo
cae/aeieo aeeoa?aioeiaeueieo ?iaiyiue Iinoeoooo iaoaiaoeee IAI
Oe?a?ie; ia eiioa?aioe?? «Iaeiiieii i?iaeaie aiaeico»
(?aaii-O?aieianuee, 1996 ?.); ia eiioa?aioe?? EUROMECH, 2-nd European
Nonlinear Oscillations Conference (I?aaa, *ao?y, 1996 ?.); ia
i?aeia?iaeiiio neiiic?oi? The 30th Symposium on Mathematical Physics
(Oi?oiue, Iieueua, 1998 ?.); ia i?aeia?iaeiiio iaoeiaiio nai?ia??
«Aneiioioe/i? oa ye?ni? iaoiaee a oai??? aeeoa?aioe?aeueieo ??aiyiue»
(Oaeai?iae, 1998 ?.).

Ioaeieaoei?. Ca oaiith aeena?oaoe?? iioae?eiaaii 6 iaoeiaeo i?aoeue,
c ieo 4 — o iaoeiaeo aeo?iaeao, 2 — o ca??ieeao iaoeiaeo i?aoeue.

No?oeoo?a oa ia’?i aeena?oaoe??. Aeena?oaoe?eia ?iaioa neeaaea?oueny
?c anooio, aeaio ?icae?e?a oa nieneo oeeoiaaii? e?oa?aoo?e c 67 iaca ?
aeeeaaeaia ia 114 noi??ieao.

INIIAIEE CI?NO ?IAIOE

O anooii iaa?oioiaaii aeooaeuei?noue oaie, i?iaiae?ciaaii no/aniee
noai i?iaeaie, noi?ioeueiaaii caaea/? aeine?aeaeaiiy oa ei?ioei
aeeeaaeaii iniiai? ?acoeueoaoe.

O ia?oiio ?icaeiei aeena?oaoei? aeine?aeaeo?oueny
aeeoa?aioe?aeueii-aaiiao?e/iee i?aeo?ae aei iiaoaeiae a?aeia?aaeaiiy
aeeaaeaiiy ?ioaa?aeueiiai i?aeiiiaiaeaeo oe?eeii ?ioaa?iaii? ca
E?oa?eeai aai?eueoiiiai? nenoaie a ?? oaciaee i?ino??. ?icaeyaea?oueny
aai?eueoiiiaa nenoaia ye aaeoi?ia iiea $K:M^2n to T(M^2n)$ ia
aeaaeeiio $2n$-aei??iiio ($dim~M=2n in bf Z_+$) iiiaiaeae?, ui
iaceaa?oueny oaciaei i?inoi?ii, ia yeiio caaeaia neiieaeoe/ia
no?oeoo?a $Omega ^(2) in Lambda (M^2n)$, oiaoi caieiooa iaae?iaeaeaia
aeeoa?aioe?aeueia 2-oi?ia c aeaaa?e A?anniaia $Lambda (M^2n)$.
Aaeoi?ia iiea $K:M^2n to T(M^2n)$ aoaea aai?eueoiiiaei, yeui ?nio?
oaea ooieoe?y $H in D(M^2n):=bf C^infty(M^2n;bf R)$, ui
caaeiaieueiy?oueny oiiaa: $$ i_K Omega ^(2)=-dH, eqno (0.1) $$
aea $i_K: Lambda (M^2n) to Lambda (M^2n)$ — oae caaia aioo??oi?
aeeoa?aioe?thaaiiy acaeiaae aaeoi?iiai iiey $K:M^2n to T(M^2n)$.
Aeei?enoiao?ii oaea icia/aiiy. Defin it Aai?eueoiiiaa aaeoi?ia
iiea $$ fracdudt=K(u) eqno(0.2) $$ ia neiieaeoe/iiio
iiiaiaeae? $M^2n$ ?ici??iino? $2n in bf Z_+$ c oiiaith (0.1), aea $t
in bf R$ — aaiethoe?eiee ia?aiao?, iaceaa?oueny oe?eeii ?ioaa?iaiith ca
E?oa?eeai (a eaaae?aoo?ao) aeeiai?/iith nenoaiith, yeui ?nio? ??aii $n
in bf Z_+$ aeaaeeeo ooieoe?e $H_1=H,~H_2,…,H_n$ $in D(M^2n) $,
oaeeo, ui a?aeiia?aei? aaeoi?i? iiey $K_j : M^2n to T(M^2n)$, aea
$i_K_j Omega ^(2)=-dH_j,~j= overline 1,n$, ooai?ththoue
ne?i/aiiiaei??io ?ica’ycio aeaaa?o E? $K$ iaae $bf R$, oiaoi ?niothoue
oae? /enea $c^i_jk in bf R,~i,j,k=overline1,n$, ui $[K_i,K_j]=sum
^n_k=1 c^k_ijK_k$ aeey an?o $i,j= overline1,n$, ? ia i?aeiiiaiaeae?
$M^n _h := u in M^2n:~H_j =h_j in bf R,~j= overline1,n $ ?ici??i?noue
aeaaa?e E? $K$ aaeoi?ieo iie?a aei??aith? $dimK=n$. ?icaeyiaii
niaoe?aeueiee aeiaaeie ?ioaa?iaieo aai?eueoiiiaeo nenoai ia
neiieaeoe/iiio iiiaiaeae? $M^2n=T^*(bf R^n),~n in bf Z_+$, yeee
aeiionea? aoaeoeaiee iien a?aeiia?aeii? neiieaeoe/ii? no?oeoo?e $Omega
^(2) in Lambda ^2 (T^*(bf R^n))$. A naia, ye a?aeiii c oai?aie
Aea?ao, aeey iaaiiai ieieo $U$ aoaeue-yei? oi/ee $u in M^2n$ ?nio? oaea
eieaeueia nenoaia eii?aeeiao ia aoean? iiiaiaeaeo $M^2n$, a oa?i?iao
yei? ia? i?noea ianooiia eaiii?/ia cia?aaeaiiy neiieaeoe/ii? no?oeoo?e
$Omega ^(2) in Lambda ^2 (T^*(bf R^n))$: $$ Omega ^(2)(u)= sum ^n
_j=1dp_j wedge dq_j eqno(0.3) $$ aea $(p_j,q_j):U to bf R^2,~j=
overline 1,n$, — a?aeiia?aei? a?aeia?aaeaiiy, ye? ia caaaeaee
i?iaeiaaeothoueny aeiaaeueii c ea?oe $U subset M^2n$ ia aanue
iiiaiaeae $M^2n$. Neooaoe?y ? ea?aeeiaeueii a?aei?iiith, eiee
$M^2n=T^*(bf R^n)$. A oeueiio aeiaaeeo, ye a?aeiii, iiaeia caaaeaee
caienaoe aeey aoaeue-yei? 1-oi?ie $alpha in Lambda ^1 (bf R^n) simeq
T^* (bf R^n)$ ianooiiee ?iceeaae ii aacenieo e?i?eii-iacaeaaeieo
1-oi?iao $dq_j in Lambda ^1 (bf R^n),~j= overline 1,n$: $$ alpha
^(1) (q)= sum ^n _j=1p_j(q)dq_j eqno(0.4) $$ a aoaeue-ye?e oi/oe?
$q in bf R^n$, aea $p_j : bf R^n to bf R,~j= overline 1,n$, — aeaye?
aeaaee? ooieoe?? c $D(bf R^n)$. I/aaeaeii, ui oe? ooieoe?? $p_j in
D(bf R^n),~j= overline 1,n$, neoaeaoue aeiaaeueieie eii?aeeiaoaie
eiaeioe/iiai i?inoi?o $T^*(bf R^n)$. Ia $T^*(bf R^n)$ ?nio? aeiaaeueii
caaeaia 2-oi?ia $Omega ^(2) in Lambda ^2 (T^*(bf R^n))$ a eaiii?/i?e
oi?i? Aea?ao: $$ Omega ^(2) := d alpha ^(1) = sum ^n _j=1dp_j wedge
dq_j. eqno(0.5) $$ A?aoiaoth/e ai??i?io caieioo?noue
2-oi?ie (0.5) oa iaae?iaeaeai?noue ia $T^*(bf R^n)$, ?? aeae?a?ii ye
eaiii?/io neiieaeoe/io no?oeoo?o $Omega ^(2) in Lambda ^2 (T^*(bf
R^n))$ ia eiaeioe/i?i iiiaiaeae? $M^2n=T^*(bf R^n)$.
Aaaaea?ii oaeiae, ui a eaiii?/ieo ci?iieo neiieaeoe/ii? no?oeoo?e
$Omega ^(2) in Lambda ^2 (T^*(bf R^n))$ caaeaia aai?eueoiiiaa nenoaia,
yea aieiae?? nenoaiith oi/ieo $n in bf Z_+$ 1-oi?i $beta ^(1) _j in
Lambda ^1 (T^*(bf R^n)),~j= overline 1,n$, a ?iaiethoe??. A oa?i?iao
ooieoe?? Aai?eueoiia $H:=H_1 in D(T^*(bf R^n))$ aeeiai?/ia nenoaia
ia? ianooiiee eaiii?/iee caien: $$ fracdq_jdt=fracpartial Hpartial
p_j, ~~~~~ fracdp_jdt=-fracpartial Hpartial q_j,~~~ j= overline
1,n, eqno(0.6) $$ i?e/iio iaaeae? aaaaeaoeiaii, ui an? aeua
aecia/ai? ooieoe?? $H_j in D(T^*(bf R^n)),~j= overline 1,n$, ?
aeaaa?a?/ii-iie?iii?aeueieie ia $T^*(bf R^n))$. A?oiooth/enue ia
oai?ai? Aae?nni-??aa, ie iiaeaii, iieeaaoe $beta ^(1) _j=dH in Lambda
^1 (T^*(bf R^n)),~j= overline 1,n$, noi?ioethaaoe aeiiii?aei? eaie.
bf Eaia 1.2.1. %beginLemma it Aeey oe?eeii ?ioaa?iaii?
aeaaa?a?/ii-iie?iii?aeueii? aai?eueoiiiai? nenoaie (0.6) ?nio? nenoaia
?aoe?iiaeueieo 1-oi?i $f^(1) _j in Lambda ^1 $ $(T^*(bf R^n)),~j=
overline 1,n$, ye? ? oi/ieie oa e?i?eii-iacaeaaeieie ia
?ioaa?aeueiiio iiiaiaeae? $M^n _h$, aeeaaeaiiio a $T^*(bf R^n))$ ca
aeiiiiiaith a?aeia?aaeaiiy $pi _h : M^n _h to T^* (bf R^n),~h in bf
R^n$. %endLemma bf Eaia 1.2.2. %beginLemma it Ia
?ioaa?aeueiiio i?aeiiiaiaeae? $M^n _h$ iaeaea ne??cue aecia/ai? e?i?eii
iacaeaaei? 1-oi?ie $overline f^(1) _j in T^*(bf R^n),~j= overline 1,n$
o aeaeyae? $$ overline f^(1)_j= sum ^n _k=1 overline b
_j,k(q,p)dq_k, eqno(0.7) $$ aea $(q,p) in pi _h (M^n _h) subset
T^*(bf R^n)$, oae?, ui aecia/athoue iaeaea ne??cue eieaeueii
a?aeia?aaeaiiy aeeaaeaiiy $overlinepi_h : M^n _h to bf R^n subset
T^*(bf R^n)$, iacaeaaeia yaii a?ae ia?aiao??a aeeaaeaiiy $h in bf
R^n$. %endLemma A?aeiia?aeue ia ieoaiiy i?i aeiaaeueiee
eii?aeeiaoiee iien iaeaea ne??cue ?ioaa?aeueiiai iiiaiaeaeo $M^n _h$
aea? oaa?aeaeaiiy. bf Oaa?aeaeaiiy 1.2.1. %beginProp it Ia
?ioaa?aeueiiio iiiaiaeae? $M^n _h$ ?niothoue $n in bf Z_+$ iacaeaaeieo,
iiaeeeai aiiieia?/ii iaiaeiicia/ieo aeiaaeueieo eii?aeeiao $t_j:M^n
_h to bf R,~j= overline 1,n$, oaeeo, ui iaeaea ne??cue ia $M^n
_h~~t_1=t in bf R$ ? $$ overline f^(1)(q,p)= overline pi^*f^(1) _h
:=dt_j, eqno(0.8) $$ aea $j= overline 1,n,~(q,p) in pi _h (M^n
_h)$, i?e/iio aaeoi? $p in T^* _q (bf R^n)$ ? $bf R^n ni q$- caeaaeiei
ia?aiao?ii. %endProp Aaaaeai? aeiaaeuei? iaeaea ne??cue
eii?aeeiaoe $t_j:M^n _h to bf R,~j= overline 1,n$, ia ?ioaa?aeueiiio
iiiaiaeae? $M^n _h$ caaeathoue a iayai?e oi?i? a?aeia?aaeaiiy
aeeaaeaiiy $pi _h: M^n _h to T^*(bf R^n)$. Iaoae ia aeaye?e ea?o?
$U_h subset M^n _h$ ia?ii eii?aeeiaoio nenoaio $mu _j : U_h to bf
R,~j= overline 1,n$, oaeo, ui a?aeia?aaeaiiy aeeaaeaiiy $pi _h: M^n _h
to T^*(bf R^n)$ caaea?oueny aiae?oe/ii o oi?i? $2n in bf Z_+~~h$-
ia?aiao?e/ieo a?aeia?aaeaiue $$ q_j= overlinepi _j,h(mu;h),~~~p_j=
pi _j,h(mu ;h), eqno(0.9) $$ aea $j= overline 1,n$ ? $mu := (mu
_1, mu _2,…,mu _n) in bf R^n$. Caaeaii ia eiaeioe/i?i
i?inoi?? $T^*(U_h)$ aei ?ioaa?aeueiiai iiiaiaeaeo $M^n _h$
eieaeueii-eaiii?/i? eii?aeeiaoe $mu : U_h to bf R^n$ oa $overline
w:T^* _mu(U_h) to bf R^n$, a oa?i?iao yeeo aecia/a?oueny iaeaea
ne??cue eieaeueiee aeeoaiii?o?ci $overline pi_h^*: T^*(bf R^n) to T^*
(U_h)$, ui caaeiaieueiy? oaeo oiiao eaiii?/iino?: $$ (overline
pi^*_h)^* Omega ^(2)Bigg|_T^*(U_h)= Omega ^(2), eqno(0.10) $$
aea, ca aecia/aiiyi, $$ (overline pi^* _h)^* Omega ^(2) = sum ^n
_j=1dp_j wedge d q _j, ~~~ Omega
^(2)Bigg|_T^*(U_h)=sum_j=1^ndw_jwedge dmu_j. $$ Aeei?enoaiiy
iaoiaeo eaiii?/ieo ia?aoai?aiiue Ioaiea?a-Ea?oaia ? i?eioeei
?icae?eaiiy ci?iieo Aai?eueoiia-sseia? aea? iiaeeea?noue noi?ioethaaoe
ianooiio iniiaio oa?aeoa?enoe/io oai?aio. bf Oai?aia 1.3.1.
%beginTheorem it Ia ?ioaa?aeueiiio iiiaiaeae? ?niothoue $n^2 in bf
Z_+$ ?aoe?iiaeueieo ii ci?iieo $(mu ,w) in bf R times bf R$ ooieoe?e
$f_kj:bf R times bf R to bf R,~j,k= overline 1,n$, oaeeo, ui
ni?aaaaeeea? ianooii? noi?ni? aeeoa?aioe?aeuei? ni?aa?aeiioaiiy: $$
f_kj(mu _j;w_j)= frac partial w_j(mu _j;h)partial h_k, eqno(0.11) $$
?ica’ceii yeeo ? iaa?? $n in bf Z_+$ aaee/ei $w_j(lambda), lambda
in bf R,~j= overline 1,n$, ui caaeiaieueiythoue aeaaa?a?/i?
ni?aa?aeiioaiiy oaeiai aeaeo: $$ w_j ^m_j(lambda)+ sum ^m_j
_k=1c_jk(lambda ;h)w_j ^m_j-k=0, eqno(0.12) $$ aea /enea $m_j in
bf Z_+,~j= overline 1,n$, a an? aaee/eie $c_jk(lambda ;h),~j= overline
1,n$, ? e?i?eieie ao?iieie ooieoe?iiaeaie ia?aiao?a $h in bf R^n$ c
?aoe?iiaeueieie ca $lambda in bf R$ eiao?oe??ioaie. %endTheorem
Io?eiaia oaa?aeaeaiiy ?ica’yco? i?iaeaio aeiaaeueiiai aiae?oe/iiai
iieno ?ioaa?aeueiiai i?aeiiiaiaeaeo ? aea? yai? ae?ace aeey
ciaoiaeaeaiiy a?aeia?aaeaiiy aeeaaeaiiy ?ioaa?aeueiiai i?aeiiiaiaeaeo
oe?eeii ?ioaa?iaii? aai?eueoiiiai? nenoaie a ?? oaciaee i?ino??.
A i?ae?icae?e? 1.4 ? 1.5 ?icaeyiooi oaeiae aeei?enoaiiy oeueiai
i?aeoiaeo aei iia?eueii cao?aieo aai?eueoiiiaeo nenoai. Io?eiai?
?acoeueoaoe canoiniaaii aei aai?eueoiiiai? neoaie oeio Oaiii-Oaeeana.
A i?ae?icae?e? 1.6 ocaaaeueiaiii aaiiao?e/iee i?aeo?ae A.Ioaiea?a
aeey aeine?aeaeaiiy eaa?aiaeaaeo iiiaiaeae?a oa aeaii eiai
canoinoaaiiy aeey ciaoiaeaeaiiy aiae?oe/iiai e?eoa??th oeio
Iaeuei?eiaa aeey aae?aaaoe/ii cao?aieo oe?eeii ?ioaa?iaieo
aai?eueoiiiaeo nenoai. Coi?ioethaaii ianooiio oa?aeoa?enoe/io oai?aio,
yea aea? aeania e?eoa??e ?icuaieaiiy eaa?aiaeaaeo iiiaiaeae?a
$Lambda^pm_varepsilon$ i?e $varepsilonto 0$. bf Oai?aia 1.6.1.
%beginTheorem it Iaoae ooieoe?y Aai?eueoiia $H_tau:=H_tau(nu),~nuin
bf R^k,~kgeq n$, — aaeoi? /eneiaeo ia?aiao??a, i?e o?eniaaieo
$tauin bf R/2pi bf Z$ aieiae?? naia?ao?eniei eiiiaeoiei
aaoa?iee?i?/iei iiiaiaeaeii $Gamma_tau$ c aeaianeiioioe/ieie
i?a?oaie aei iaae?iaeaeaieo oi/ie $(q_tau,pm,p_tau,pm)in T^*(bf R^n)$.
sseui ?nio? oaea oi/ea $(tau_0,s_0;nu_0)in bf R/2pi bf
ZtimesGamma_tautimes bf R^k$, aeey yei? aeeiiai? oae? oiiae: i)
$mu(tau_0,s_0;nu_0)=0$, aea $mu(tau_0,s_0;nu_0)$- aiaeia $mu$-aaeoi?a
A.E. Iaeuei?eiaa: $$ mu(tau)= mu_j(tau)in bf R:~mu_j(tau)= left< nabla H_j,tau(q_tau,p_tau),delta(tau) right>,~j=overline1, n , $$
$delta(tau)in T(U_tau)$ — aaeoi? ?icuaieaiiy aneiioioe/ieo
eaa?aiaeaaeo iiiaiaeae?a $Lambda^pm_varepsilon subset T^*(U_tau)$;
ii) aaeoi?-noiai/eee iao?eoe? $left|left|fracpartial mu partial
(tau,s)right|right|(tau_0,s_0;nu_0)$ ? iaioeueiaeie; iii)
$rankleft|left|fracpartial mupartial nuright|right|(tau_0,
s_0;nu_0)=dimGamma_tau =n$, noindent oiae? aeey aeinoaoiuei
iaeeo cia/aiue $varepsilon

Похожие записи