Oa?e?anUeeee AeA?AEAAIEE oi?aa?neoao

Ai?ene?ia Na?oeaia A?eoi??aia

OAeE 537.874

?ICN?ssIIss IIAA?OIAAEO OAEEUe OA IO*E?A IA IAIAeII??AeIINOssO O
A?AeE?EOEO OAEEAAIAeAO ? IA ?AOEAEOI?AO

01.04.03 – ?aae?io?ceea

Aaoi?aoa?ao

aeena?oaoe?? ia caeiaoooy iaoeiaiai nooiaiy

eaiaeeaeaoa o?ceei-iaoaiaoe/ieo iaoe

Oa?e?a – 1999

Aeena?oaoe??th ? ?oeiien.

?iaioa aeeiiaia a Oa?e?anueeiio aea?aeaaiiio oi?aa?neoao? I?i?noa?noaa
Ina?oe Oe?a?ie

Iaoeiaee ea??aiee

Aeieoi? o?ceei-iaoaiaoe/ieo iaoe, noa?oee iaoeiaee ni?a?ia?oiee Iine/
Ieaenaiae? Eineiiae/ , ?inoeooo ?aae?io?ceee oa aeaeo?ii?ee IAI Oe?a?ie,
i?ia?aeiee iaoeiaee ni?a?ia?oiee

Io?oe?ei? iiiiaioe:

aeieoi? o?ceei-iaoaiaoe/ieo iaoe, i?ioani? Oeaeiye Ieeiea Aioiiiae/,
?inoeooo ieaciiai? aeaeo?ii?ee ? iiaeo iaoiae?a i?enei?aiiy IIOe
«Oa?e?anueeee o?ceei-oaoi?/iee ?inoeooo», canooiiee aee?aeoi?a (i.
Oa?e?a),

aeieoi? oiceei-iaoaiaoe/ieo iaoe, i?ioani?, /eai-ei?aniiiaeaio IAI
Oe?a?ie Iaca?/oe C?iia?e Oaiaei?iae/, O?ceei-iaoai?/iee ?inoeooo ?i.
A.A. Ea?iaiea IAI Oe?a?ie, canooiiee aee?aeoi?a (i. Euea?a)

I?ia?aeia onoaiiaa:

?inoeooo ?aae?iano?iiii?? IAI Oe?a?ie, a?aeae?e aeaeo?iiieo i?eeaae?a
iaaeaeniei? /anoioe,

i. Oa?e?a

Caoeno a?aeaoaeaoueny » 17 » /a?aiy 1999 ?ieo i 1400 aiaeei? ia
can?aeaii? niaoe?ae?ciaaii? a/aii? ?aaee Ae 64.051.02 Oa?e?anueeiai
aea?aeaaiiai oi?aa?neoaoo, (310077, i. Oa?e?a, ie. Naiaiaee, 4, aoae.
3-9).

C aeena?oaoe??th iiaeia iciaeiieoenue o Oeaio?aeuei?e iaoeia?e
a?ae?ioaoe? Oa?e?anueeiai aea?aeaaiiai oi?aa?neoaoo: 310077, i. Oa?e?a,
ie. Naiaiaee, 4.

Aaoi?aoa?ao ?ic?neaiee » 14 » o?aaiy 1999 ?ieo

A/aiee nae?aoa?

niaoe?ae?ciaaii? a/aii? ?aaee Eyoianueeee A.O.

CAAAEUeIA OA?AEOA?ENOEEA ?IAIOE

Aeena?oaoe?eio ?iaioo i?enay/aii ?ica’ycaiith aeaiaei??ieo caaea/
?icn?yiiy aeaeo?iiaai?oieo oaeeue ia eieaeueieo ae?aeaeo?e/ieo ?
iaoaeaaeo ?icn?thaa/ao, ?icoaoiaaieo o ieineioa?oaaoiio ae?aeaeo?e/iiio
iai?ai?inoi?? iaiaaeaiiio ?aeaaeueii i?ia?aeiith ieiueiith. Caaea/?
oaeiai oeio /anoi aeieeathoue o ??cieo aaeocyo i?eeeaaeii? o?ceee:
oaoi?oe? IA*, ca’yceo, aaio?ceoe?, a?ae?iaeonoeoe? oiui. Ia’?eoii
aea/aiiy oe??? ?iaioe ?: 1) iiaeaethaaiiy ooieoe?iiaeueieo eiiiiiaio?a
a?aee?eoeo oaeeaaiae?a, oaeeo, ye o?eueo?e ? aeaiaioe ca’yceo, 2)
iiaeaethaaiiy ?aoeaeoi?ii? aioaie iiaeeco iaae? ?iciiae?eo. A
aeena?oaoe?? ?icaeyaeathoueny oae? caaea/?:

?icn?yiiy aeanii? iiaa?oiaai? oaee? ae?aeaeo?e/iiai oaeeaaiaeo ia
e?oaiaiio ae?aeaeo?e/iiio oeee?iae??, ui iiaeaeth?
nioai-caai?iaeaeoaaeueee o?eueo? ia oaeeyo oaii/oui? aaea?a? (OOA),

aiaeia?/ia caaea/a aeey ae?aeaeo?e/iiai o?oa/aoiai oeee?iae?a ye iiaeae?
iiaeeo?eiaaiiai o?eueo?o,

?icn?yiiy oaeeaaiai io/ea, yeee aei?ii?ith?oueny eiiieaeniei aeaea?aeii
(EAe), ia e?oaiaiio ? o?oa/aoiio oeee?iae?ao, ui iiaeaeththoue
iai?yieai? aeaiaioe ca’yceo ia OOA,

?icn?yiiy iiaa?oiaai? oaee? ia e?oaiaiio iaoaeaaiio oeee?iae?? c ioai?ii
ca’yceo, ui iiaeaeth? ?aciiainiee ?aaeaeoi?iee o?eueo?,

?icn?yiiy oaeeaaiai io/ea EAe ia iaoaeaaiio oeee?iae?e/iiio e?oaiaiio
?aoeaeoi??, yeee ?icoaoiaaii iaae ?iiaaeainiith iaaeath ?iciiae?eo, aeey
iiaeaethaaiiy ?aoeaeoi?ii? aioaie iaae ieineith ia?aeaaeueiith
iiaa?oiath caie?,

?icn?yiiy iiaa?oiaai? oaee? oa oaeeaaiai io/ea EAe ia ae?aeaeo?e/ieo
oeee?iae?ao aeia?eueieo iiia?a/ieo ia?a??c?a, ui iiaeaeththoue
?aciiainiee o?eueo? oa i?eciaiee aeaiaio ca’yceo.

Aeooaeuei?noue oaie aeo?ea? ?c oiai oaeoo, ui ia?ae?/ai? i?eeaaee oe?iei
canoiniaothoueny o no/ani?e ?aae?io?ceoe? ? oaoi?oe? IA*, i?e?iao?iaeo
oa iioe/ieo oaeeue. Iaeiae, a?eueo?noue ?nioth/eo aeai?eoi?a ?ic?aooie?a
oaeeo i?eeaae?a ana ua aaco?oueny ia iaaeeaeaieo iiaeaeyo ? iaoiaeao,
ye? iathoue iaeiio?ieueiaaio oi/i?noue ??oaiue oa ia a?aoiaothoue
iiai?noth aca?iiae?th i?ae ??cieie /anoeiaie ?icn?thaa/?a ? iaaeaie
?iciiae?eo. Oea ia aeicaiey? aeaoaeueii aea/eoe o?ceeo oaeeaaeo yaeu ?
aeei?enoiaoaaoe iaaeeaeai? iaoiaee ye oi?aa?naeueio oa iaae?eio iniiao
aeey eiii’thoa?iiai iiaeaethaaiiy. Oaeei /eiii, aaeeea cia/aiiy ia?
?ic?iaea aeinoia??ieo oa aoaeoeaieo aeai?eoi?a ia iniia? ei?aeoieo
iaoaiaoe/ieo iaoiae?a ?ica’ycaiiy a?aeiia?aeieo a?aie/ieo caaea/ aeey
??aiyiue Iaenaaea o oa?oaaoiio na?aaeiaeu?. Oae? aeai?eoie iathoue
a?oiooaaoeny ia eiioeaioe?? aiae?oe/ii? ?aaoey?ecaoe??, yea aa?aioo?, ui
/eneia? ??oaiiy aoaeooue ca?aaoeny.

Ae?aeaeo?e/i? oa iaoaeaa? ?icn?thaa/? o ae?aeaeo?e/iiio oaeeaaiae?.
Eieae?ciaai? iaiaeii??aeiino? o a?aee?eoeo oaeeaaiaeao (AO)
aeei?enoiaothoueny ye aaaeeea? eiiiiiaioe aaaaoueio iioe/ieo ?
i?e?iao?iaeo i?eeaae?a ? nenoai, ui aacothoueny ia ?iciianthaeaeaii?
iiaa?oiaaeo oaeeue. Aiie aeei?enoiaothoueny ye aeaiaioe aioai
aeo?eath/eo oaeeue, o?eueo??a, ?aciiaoi??a, ?ioaa?aeueieo aeaiaio?a
ca’yceo ? o.ae. ?ic?iaea oa aeaioiaeaiiy oaeeo i?eeaae?a ? neeaaeiith
oaoi?/iith caaea/ath. Aeey cieaeaiiy aa?oino? oa iie?ioaiiy ?iai/eo
oa?aeoa?enoee oaeeo i?eeaae?a iaiao?aeii iiia?aaei? eiii’thoa?ia
iiaeaethaaiiy, i?e yeiio aeei?enoiao?oueny iaae?eiee iaoiae aiae?co.
Iiaeaethaaiiy ?icn?yiiy ia a?aeiia?aeieo ae?aeaeo?e/ieo ? iaoaeaaeo
iaiaeii??aeiinoyo ana ua a iniiaiiio aaco?oueny ia iaaeeaeaieo iaoiaeao.
I/aaeaeii, ui aeey iioei?caoe?? ?iaioe aeaiaio?a ca’yceo o AO, o?eueo??a
oa ?ioeo ianeaieo aeaiaio?a iaiao?aeii iiaeaeueoa oai?aoe/ia oa
aenia?eiaioaeueia aeine?aeaeaiiy. Aei oeueiai /ano ae?aa?aie ?icn?yiiy,
aiie?ooaee oaeeaaiaeieo iiae ? aoaeoeai?noue aeacaieo i?eeaae?a oaeaeoa
ioe?ithaaeeny, i?ae ?ic?aoiaoaaeeny. ?ic?iaea a?eueo oi/ieo iaoiae?a
?ic?aooieo ? iniaeeai aeooaeueiith caaea/ath i?e aeine?aeaeaii?
i?eeaae?a i?e?iao?iaiai ae?aiaciio oaeeue ia a?aei?io a?ae iioe/ieo,
ine?eueee o oeueiio aeiaaeeo ?ici??e i?eeaae?a ni?anoaaeythoueny ?c
aeiaaeeiith oaee?. O?eueee inoaii?i /anii aoee cai?iiiiiaai? aaeaeaaoi?
iaoaiaoe/i? iaoiaee, ui aeicaieythoue ei?aeoii ?ica’ycoaaoe iinoaaeai?
caaea/?. Iaeiae, o oeeo ?iaioao ia aea/aeenue eiie?aoi? canoinoaaiiy,
oae?, ye ?ic?aooiie o?eueo??a ? aeaiaio?a ca’yceo o AO.

Oeee?iae?e/ia ?aoeaeoi?ia aioaia iiaeeco caiii? iiaa?oi?. ?aoeaeoi?i?
aioaie (?A) ? iniiaieie eiiiiiaioaie aaaaoueio iacaiieo ? i?a?oaeueieo
?aae?i/anoioieo nenoai. Aiie aeei?enoiaothoueny o noiooieeiaeo nenoaiao
ca’yceo, ?aaea?ao, ?aae?iano?iiii??, nenoaiao noaaeaiiy oiui.
C?inoath/ee ??aaiue aeiia aei ?iaioe ?aoeaeoi?ieo aioai aeeeeeaa cia/iee
i?ia?an o ?ic?iaoe? /eneiaeo iaoiae?a aeey ?o aiae?co ? iioei?caoe??.
Eiino?oeoe?y aoaeue-yei? ?aoeaeoi?ii? aioaie aeeth/a? uiiaeiaioa iaeei
ii?ii?ithaa/ ? iaeei ?aoeaeoi?. Aeey ciaioaiiy aieeao e?ioeaaiai ?ici??o
aia?oo?e (aeieeiaiiy caaei?o iaethnoe?a, aeeo?aeoe?? iiey ii?ii?ithaa/a
ia e?ath aeca?eaea oiui), iai?yieaiee ii?ii?ithaa/ iiaeiai caaacia/oaaoe
iecueeee ??aaiue ii?ii?iaiiy e?ath ?aoeaeoi?a. Iaeiae, aei oeueiai /ano
iaoiaee iiaeaethaaiiy ?A aacoaaeeny ia iiaeaii? iiey ii?ii?ithaa/a o
aeaeyae? aaoniaa io/ea aai o aeaeyae? iaai?o oeee?iae?e/ieo aai
noa?e/ieo oaeeue, iiiiiaeaiiai ia nooi?i/aoo ooieoe?th eooa.
Iacaaaeath/e ia i?inoioo caieno, iaeiei ?c aaaeeeaeo iaaeie?e?a oaeeo
i?aaenoaaeaiue ? oie oaeo, ui aiie — ia ??oaiiy oaeeaaiai ??aiyiiy.
Oaeei /eiii, ao?a/a?oueny oi/i?noue ai?ieneiaoe?? iiey ii?ii?ithaa/a a
aeeaei?e aai aeaeuei?e cii?. O?aaa aeiaeaoe, ui yeui ca iiea
ii?ii?ithaa/a acyoe iaiai?yieaia iiea cae/aeiiai oi/a/iiai aai e?i?eiiai
oieo, oi ?acoeueoaoe aeine?aeaeaiiy aoaeooue iaoe iaei ni?eueiiai c
iiaeaethaaiiyi ?A, oi/a oaea iiea ? caaeiaieueiy? oaeeaaiio ??aiyiith.

I?e iiaeaethaaii? ?icn?yiiy ia ?aoeaeoi?? iaeiei ?c oai?aoe/ieo
iaoiae?a, ui iaeoe?oa aeei?enoiao?oueny, ? iaoiae o?ce/ii? iioeee (OI).
A?eueo?noue ?nioth/eo i?ia?aiieo iaeao?a aacothoueny ia OI, ?iiae? o
eiia?iaoe?? c aaiiao?e/iith oai???th aeeo?aeoe?? (AOAe). Iaeiae, ye OI,
oae ? AOAe ? aeniei/anoioieie aneiioioe/ieie iaoiaeaie, ?, oaeei /eiii,
iathoue i?e?iaei? iaiaaeaiiy. OI aeia?a iieno? oi?io aieiaiiai i?iiaiy,
aea ia aeicaiey? io?eiaoe oi/i? aeai? i?i aieiaa ? caaei?
aei?ii?ithaaiiy. A naith /a?ao, AOAe ia iiaea canoiniaoaaoenue aeey
?ic?aooie?a iiey a iai?yieo aieiaiiai i?iiaiy, aea aeinoaoiuei oi/ii
iieno? aieia? iaethnoee ae?aa?aie iai?yieaiino?. E??i oiai, OI ? AOAe ia
aeathoue oi/ieo ?acoeueoao?a i?e iiaeaethaaii? ?aoeaeoi??a ?c ?ici??aie
ii?yaeeo aeiaaeeie oaee? oa ?A a i?enooiino? ?ioeo ia’?eo?a, aca?iiae?y
iiey c yeeie aieeaa? ia ia?aiao?e aioaie. O oeueiio aeiaaeeo iiaea
aeei?enoiaoaaoenue iaoiae iiiaio?a (II), yeee aaco?oueny ia /eneia?e
ai?ieneiaoe?? no?iaeo ?ioaa?aeueieo ??aiyiue (??) aeey aeaeo?iiaai?oiiai
iiey. Aea oeae iaoiae iio?aao? aaeeeeo aeo?ao /ano ? iai’yo?
eiii’thoa?a, ui iaiaaeo? eiai aeei?enoaiiy ?aoeaeoi?aie c iaaaeeeei
?ici??ii aia?oo?e. E??i oiai, ia aa?aioiaaia ca?aei?noue ??oaiiy, ui
io?eiaii oeei iaoiaeii,. Oaeei /eiii ?icaeoie iaae?eiiai iaoiaeo
?ic?aooieo ae?aa?aie iai?yieaiino? ? iaiao?aeiei, iniaeeai aeey
aeiaaeeo, eiee o aeeaei?e cii? i?enooi? aeiaeaoeia? ?icn?thaa/?, ? aeey
i?ii?aeii? iaeano? i?ae II ? OI.

Aaaaoi c aeuacaaaeaieo iaiaaeaiue iiaea aooe ciyoi i?e canoinoaaii?
aiae?oe/ii? ?aaoey?ecaoe??, oiaoi ia?aoai?aiiy neiaoey?ieo ?ioaa?aeueieo
??aiyiue a ?ioaa?aeuei? aai iane?i/aii? iao?e/i? ??aiyiiy ae?oaiai ?iaeo
oeio O?aaeaieueia. Oaeee i?aeo?ae aa?aioo? ca?aei?noue ? eiio?ieueiaaio
oi/i?noue /eneiaiai ??oaiiy. Aeey oeee?iae?e/ieo ?aoeaeoi??a
cai?iiiiiaaii iaoiae, yeee aaco?oueny ia eiia?iaoe?? iaoiaeo aiae?oe/ii?
?aaoey?ecaoe?? c iiaeaeeth iiey ii?ii?ithaa/a o aeaeyae? oaeeueiaiai
io/ea, ui aei?ii?ith?oueny eiiieaeniei aeaea?aeii. ?aaoey?ecaoe?y ooo
aeinyaa?oueny ca ?aooiie iaa?iaiiy noaoe/ii? /anoeie yae?a
?ioaa?aeueiiai ??aiyiiy. Iio?i oeae iaoiae aoa canoiniaaiee aeey
aea/aiiy ?aoeaeoi?a c iaiaeii??aeiei iaaaioaaeaiiyi e?ath aeca?eaea e
?aoeaeoi?a ?icoaoiaaiiai o na?aaeei? iao?ea/a. O ?aieao iiaeaeueoiai
?icaeoeo oeueiai iaoiaeo a aeena?oaoe?ei?e ?iaio? ?icaeyaea?oueny
oeee?iae?e/ia ?A a?ey ia?aeaaeueii? iiaa?oi? caie?.

Ca’ycie ?iaioe c iaoeiaeie i?ia?aiaie, ieaiaie, oaiaie. Aeena?oaoe?y
aeeiioaaeanue o ?aieao eeth/iaiai iai?yieo aeine?aeaeaiiy
?aae?io?ce/iiai oaeoeueoaoo Oa?e?anueeiai aea?aeaaiiai oi?aa?neoaoo ?
eaoaae?e oai?aoe/ii? ?aae?io?ceee «Ia?niaeoeai? ?ioi?iaoe?ei?
oaoiieia??, i?eeaaee eiiieaenii? aaoiiaoecaoe?? nenoai ca’yceo». ?iaioa
oaeiae aoea /anoeiith iaaaaeaieo ieae/a iaoeiai-aeine?aeieoeueeeo
i?iaeo?a:

«Reflector Antennas Analysis and Modeling» (1995-96), TUBITAK-DOPROG,
ni?eueii c oi?aa?neoaoii A?eueeaio, Aiea?a, Oo?a//eia.

«Development of novel analytical-numerical approaches to wave scattering
by dielectric and metal bodies in slab waveguide, and reflector antennas
in layered medium» (1996), oiiae SUMMA, NOA.

«CAD-oriented numerical analysis of surface-wave filters and couplers»
(1997), IEEE Microwave Theory and Techniques Society.

Iaoa oa caaea/? aeine?aeaeaiiy

?ic?iaea oi/ieo oa aeiiii?/ieo aeai?eoi?a, ui oaeaeei ca?aathoueny, aeey
iiaeaethaaiiy ooieoe?iiaeueieo eiiiiiaio o a?aee?eoeo oaeeaaiaeao oa
?aoeaeoi?ieo aioai a?ey caiii? iiaa?oi?, aacoth/enue ia eiioeaioe??
aiae?oe/ii? ?aaoey?ecaoe??.

I?iaaaeaiiy, c aeei?enoaiiyi oeeo aeai?eoi?a, o?ce/iiai aiae?co
aeaeo?iiaai?oieo iie?a oa oa?aeoa?enoee i?eno?i?a, ui iiaeaeththoueny.

I?e iiaeaethaaii? eiiiiiaio a?aee?eoeo oaeeaaiae?a eiie?aoieie caaea/aie
aoee:

c’ynoaaiiy aieeao ao?ao, iia’ycaieo c aei?ii?ithaaiiyi ? iiaeeiaiiyi, ia
oa?aeoa?enoeee o?eueo??a ia oaeeyo oaii/oui? aaea?a? oa aea/aiiy aieeao
aeueo iiae a?aee?eoiai oaeeaaiaeo ia ooieoe?iioaaiiy o?eueo?a ia OOA;

aeine?aeaeaiiy ia?aaaa ooaoey?iiai o?eueo?a;

ii??aiyiiy o?eueo??a ia OOA aeey aeaio aeueoa?iaoeaieo iiey?ecaoe?e;

ia?aa??ea iioaioe?eieo iiaeeeainoae iai?yieaiiai aeaiaioo ca’yceo ia
OOA;

?icaeyae oa?aeoa?enoee ?aciiainiiai ?aaeaeoi?iiai o?eueo?o ia aac?
iaoaeaaiai e?oaiaiai oeee?iae?o c ioai?ii ca’yceo;

ocaaaeueiaiiy iaoiaeo aeey iieno ae?aeaeo?e/ieo oeee?iae??a aeia?eueii?
oi?ie ia?a??co ? ?icaeyae oa?aeoa?enoee i?yiieooiiai ?aciiainiiai
o?eueo?o ? i?eciaiiai aeaiaioo ca’yceo;

I?e iiaeaethaaii? ?aoeaeoi?ieo aioai eiie?aoiith iaoith aoei:

aea/aiiy aieeao ia?aeaaeueii? iiaa?oi? caie? ia eiao?oe??io
ni?yiiaaiino?, eiao?oe??io i?aeneeaiiy oa ??aaiue aieiaiai
aei?ii?ithaaiiy ?aoeaeoi?ii? aioaie.

Iaoeiaa iiaecia aecia/aia i?ea?iaeueieie ?acoeueoaoaie, ye? iaea?aeaii
aia?oa:

iieacaii, ui o?eueo?e ia OOA ? ia?aaaaeii aeeneiaoeaieie o?eueo?aie, ye?
noai?ththoue nioae caai?iaeaeaiiy caaaeyee eiia?iiaaiiio aieeao ao?ao ia
aei?ii?iaiiy oa iiaeeiaiiy;

ye aoei c’yniaaii, caoaeaeaiiy iiaa?oiaaeo oaeeue aeueo ii?yaee?a
i?ecaiaeeoue aei ??ceiai c?inoaiiy eiao?oe??io?a ia?aoai?aiiy iiae ? aei
ciaioaiiy ao?ao ia aei?ii?iaiiy ? iiaeeiaiiy o iaoa??ae? ?aciiaoi?a;

iieacaii, ui aeei?enoaiiy o?oa/aoeo ?aciiaoi??a aeicaiey? ?ic??aeeoe
niaeo? ?aciiaoi?a oeyoii aeeo/aiiy ia?aceoieo eieeaaiue c aeae?eueeiia
?aae?aeueieie aa??aoe?yie iiey;

?ic?aooiee iieacaee, ui o?eueo?e ia OOA o aeiaaeeo I-iiey?ecaoe??
iathoue ia?aaaao ia?aae o?eueo?aie ia A-iiey?ecaoe??, ui i?iyaey?oueny a
iaio aeyaeaiiio aoaeo? ia?aceoieo eieeaaiue ? a?eueo aeniei?
aeia?ioiino? ?iai/eo eieeaaiue;

ca aeiiiiiaith iai?yieaiiai aeaiaioo ca’yceo ia iniia? ae?aeaeo?e/iiai
?aciiaoi?a ia OOA yeiaeiaio 50% iiooaeiino? io/ea iiaea aooe ia?aoai?aii
o iiooaei?noue iiaa?oiaaeo oaeeue;

iieacaii, ui o?eueo? ia iniia? iaoaeaaiai ?aciiaoi?o c ioai?ii ca’yceo
a?aeaeaa? iiaa?oiaao oaeeth, a ia aei?ii?ith? ??; o aeiaaeeo
I-iiey?ecaoe?? ia?niaeoeaiith ? iiaeeea?noue noai?aiiy i?i?aoth?ieo
?aciiainieo o?eueo??a ca ?aooiie aeei?enoaiiy eaac?noaoe/iiai ?aciiaino;

iaoiae eiiieaeniiai aeaea?aea aoa oni?oii canoiniaaiee aeey iieno
oaeeaaeo io/e?a i?e iiaeaethaaii? iai?yieaieo aeaiaio?a ca’yceo oa
?aoeaeoi?ieo aioai;

aea/aii aieea ieinei? ia?aeaaeueii? iiaa?oi? caie? ia ae?aa?aio
aei?ii?ithaaiiy, eiao?oe??ioe iai?yieaiino? e i?aeneeaiiy oa ??aaiue
aieiaiai aei?ii?ithaaiiy ?aoeaeoi?ii? aioaie;

?ic?iaeaii aeai?eoi, yeee aaco?oueny ia iaoiae? aiae?oe/ii?
?aaoey?ecaoe??, aeey ?ica’ycaiiy caaea/ ?icn?yiiy oaeeue ia
ae?aeaeo?e/ieo oeee?iae?ao aeia?eueiiai iiia?a/iiai ia?a??co a
ieineioa?oaaoiio na?aaeiaeu?, oa canoiniaaii eiai aeey iiaeaethaaiiy
i?yiieooiiai ?aciiainiiai o?eueo?o ? i?eciaiiai aeaiaioo ca’yceo.

I?aeoe/ia cia/aiiy io?eiaieo ?acoeueoao?a. Eieae?ciaai?
iaiaeii??aeiino? ? a?aeiieie ye aaaeeea? eiiiiiaioe ??ciiiai?oieo
iioe/ieo aeaeo?iiieo nenoai. Aiaeia?/i? ?aea? canoiniaothoueny a IA* ?
iniaeeai i?e?iao?iaiio ae?aiaciiao oaeeue. ?acoeueoaoe i?iaaaeaiiai
aiae?co iiaeeaeththoue ?icoi?iiy yaeu, ui noi?iaiaeaeothoue ?icn?yiiy
oaeeue o ieineioa?oaaoiio na?aaeiaeu?, ? oiio iiaeooue aooe aeei?enoai?
aeey a?eueo oi/iiai aeine?aeaeaiiy, i?iaeooaaiiy oa iioei?caoe?? ?iaioe
?aciiaoi??a ia OOA, nioai-caai?iaeaeoaaeueieo e ?aaeaeoi?ieo o?eueo??a ?
aeaiaio?a ca’yceo o a?aee?eoeo oaeeaaiaeao. Ne?ae a?aei?oeoe, ui
iiae?ai? eiioeaioe?? oa ?acoeueoaoe (a aeayeeo aeiaaeeao i?aeoe/ii
aiaeia?/i?) ? ni?aaaaeeeaeie ? aeey caaea/ ?icn?yiiy ? ia?aoai?aiiy
aeonoe/ieo oaeeue, ui iathoue ??ciiiai?oi? canoinoaaiiy o
a?ae?iaeonoeoe?. ?aoeaeoi?i? aioaie oe?iei canoiniaothoueny o iacaiieo ?
ii?nueeeo nenoaiao ca’yceo oa noaaeaiiy a i?e?iao?iaiio ? IA*
ae?aiaciiao. Io?eiaiiy oi/ieo aeaieo uiaei aieeao caiii? (ii?nueei?)
iiaa?oi? ia ?iai/? oa?aeoa?enoeee oaeeo aioai iiaea aeiiiiiaoe i?e
?ic?iaoe? aioai c iie?ioaieie oa?aeoa?enoeeaie.

?ic?iaeai? aeai?eoie ? i?ia?aie ca nai?th oi?aa?naeuei?noth oa
aoaeoeai?noth cia/ii ia?aaa?oothoue a?aeii? aiaeiae, ine?eueee
aeei?enoaiiy i?ioeaaeo?e aiae?oe/ii? ?aaoey?ecaoe?? aa?aioo? oi/i?noue
/eneiaeo ?acoeueoao?a. Oea aeicaiey? a?aoe ?o ca iniiao i?e noai?aii?
i?ia?aiiiai caaacia/aiiy iiaiai iieie?iiy aeey ?ic?aooie?a i?eeaae?a ia
iiaa?oiaaeo oaeeyo ? ?A.

Iniaenoee aianie aeena?oaioa. A iioae?eiaaieo ?c ni?aaaoi?aie ?iaioao
iniaenoee aianie aeena?oaioa iieyaa?:

a ?iaioao [1-5,7-15] – a o/ano? i?e ?ic?iaoe? oai?aoe/iiai i?aeoiaeo aei
??oaiiy iinoaaeaii? caaea/?, io?eiaii? aiae?oe/ieo ??aiyiue ?
iaaiai?aii? io?eiaieo /eneiaeo ?acoeueoao?a;

a ?iaioao [1-15] – o i?iaaaeaii? iiaiiai ianyao ?ia?o uiaei /eneiaiai
iiaeaethaaiiy oa ?ic?iaee aeai?eoi?a ? i?ia?aiiiai caaacia/aiiy.

Ai?iaaoe?y ?acoeueoao?a aeena?oaoe??. ?acoeueoaoe ?iaioe ca oaiith
aeena?oaoe?? aeiiia?aeaeenue ? iaaiai?thaaeenue ia oaeeo eiioa?aioe?yo ?
nai?ia?ao:

International Conferences on Mathematical Methods in Electromagnetic
Theory, Kharkov, Ukraine, 1998, Lviv, Ukraine, 1996; IEEE AP-S & URSI
International Symposium, Baltimore, USA, 1996; NRSC & QMW Antenna
Symposium, London, UK, 1995; MIKON International Conferences, Warsaw,
Poland, 1996, Krakow, Poland, 1998; 22nd International Symposium on
Infrared and Millimeter Waves, Wintergreen, USA, 1997; Colloquium on
Hertzian Optics and Dielectrics, Clermont-Ferrand, France, 1997;
Progress in EM Research Symposium, Nantes, France, 1998; International
Workshop on Optical Waveguide Theory and Numerical Modeling, Hagen,
Germany, 1998; European Microwave Conference, Amsterdam, the
Netherlands, 1998; Asia-Pacific Microwave Conference, Yokohama, Japan,
1998; International Symposium on Antennas, Nice, France, 1998.

Ioae?eaoe??. ?acoeueoaoe aeena?oaoe?? iioae?eiaaii o 15 iaoeiaeo
?iaioao, o oiio /ene? a 5 noaooyo o iaoeiaeo aeo?iaeao ? a 10 ca??ieeao
aeiiia?aeae eiioa?aioe?e.

No?oeoo?a e ianya aeena?oaoe??. Aeena?oaoe?y neeaaea?oueny c? anooio,
/ioe?ueio ?icae?e?a, aeniiae?a ? nieneo aeei?enoaieo e?oa?aoo?ieo
aeaea?ae. Iiaiee ianya aeena?oaoe?? neeaaea? 147 noi??iie, c ieo 10
noi?. — nienie aeei?enoaieo e?oa?aoo?ieo aeaea?ae (103 iaeiaioaaiiy), 42
noi?. — ?ethno?aoe??.

INIIAIEE CI?NO ?IAIOE

O anooi? iaa?oioiaaii aeooaeuei?noue ia?aii? oaie, noi?ioeueiaaia iaoa ?
caaea/? aeine?aeaeaiiy, iaaaaeaia caaaeueia oa?aeoa?enoeea aeena?oaoe??.

?icae?e 1 i?enay/aiee iaeyaeo e?oa?aoo?e ca oaiith ?iaioe. ?icaeyiooi
iniiai? iai?yiee oai?aoe/ieo aeine?aeaeaiue uiaei iiaeaethaaiiy
ooieoe?iiaeueieo eiiiiiaio?a a?aee?eoeo oaeeaaiae?a oa ?aoeaeoi?ieo
aioai. Ia?oee i?ae?icae?e i?enay/aii iaeyaeo i?eeaae?a, ooieoe?iioaaiiy
yeeo aaco?oueny ia aca?iiae?? oaeeue a?aee?eoeo oaeeaaiae?a ?c
eieae?ciaaieie ae?aeaeo?e/ieie iaiaeii??aeiinoyie, a oaeiae ?nioth/eo
i?aeoiae?a aei ?o aiae?oe/iiai ? eiii’thoa?iiai iiaeaethaaiiy. O
ae?oaiio i?ae?icae?e? iienaii canoinoaaiiy e?oaiaiai iaoaeaaiai ae?aio
ye iiaeae? ?aaeaeoi?iiai o?eueo?a oa ?aoeaeoi?a; iaaaaeaii ? ii??aiyii
?nioth/? iaoiaee ?ica’ycaiiy caaea/ ?icn?yiiy ??cieo oei?a iiey ia
oaeiio ae?ai?. O o?aoueiio i?ae?icae?e? ii??aiththoueny ??ci? i?aeoiaee
ia iniia? iaoiaea ?ioaa?aeueieo ??aiyiue aei caaea/? aeeo?aeoe?? ia
ae?aeaeo?e/ieo oeee?iae?ao aeia?eueieo iiia?a/ieo ia?a??c?a.
Iiyniy?oueny cia/aiiy oa ia?aaaae iaoiaeo aiae?oe/ii? ?aaoey?ecaoe??
aeey ?ica’ycaiiy aeuacaaaeaieo caaea/. Ia iniia? aiae?co anueiai iaai?o
?nioth/eo e?oa?aoo?ieo aeaieo noi?ioeueiaaii iniiai? caaea/?
aeine?aeaeaiiy.

?icae?e 2 i?enay/aii iiaeaethaaiith nioaicaai?iaeaeoaaeueieo o?eueo??a
(?en.1) oa iai?yieaieo aeaiaio?a ca’yceo (?en.5) ia iniia? e?oaiaeo
oeee?iae?e/ieo oa ooaoey?ieo ae?aeaeo?e/ieo ?aciiaoi?ao (Ae?) c OOA.
Caaea/o ?icn?yiiy aeey iiaii? ooieoe??, ui iieno? Ez aai Hz eiiiiiaioo
iiey, iiaeia caanoe aei nenoaie a?aie/ieo ?? ca aeiiiiiaith iaoiaeo
iiaa?oiaaeo iioaioe?ae?a. ssae?aie ?? ? ooieoe?y A??ia (A- aai I-oeio)
iaeii??aeiiai na?aaeiaeua c ae?aeaeo?e/iith i?iieei?noth (b, ooieoe?y
A??ia iai?ai?inoi?o, iaiaaeaiiai ae?aeaeo?e/iei oa?ii ia iaoaeaa?e
i?aeeiaeoe?, a oaeiae ?o ii?iaeuei? iio?aei?. O aeiaaeeo nooe?eueiiai
e?oaiaiai oeee?iae?a caeeoa?oueny o?eueee iaeia ia?a ??, o oie /an ye
aeey ooaoey?iiai oeee?iae?a io?eiothoueny aea? ia?e ?ioaa?aeueieo
??aiyiue.

noai?ththoue nenoaio i?oiaiiaeueieo aeanieo ooieoe?e an?o
?ioaa?aeueieo iia?aoi??a io?eiaieo ??, yeui ooieoe?th A??ia oaeeaaiaea
cai?ieoe ?? /anoeiith, yea a?aeiia?aea? a?eueiiio i?inoi?o.
Aeei?enoiaoth/e oe? ooieoe?? aeey ?icaeiaiiy o i?iaeoe?ei?e noai?
Aaeuei?e?ia, iiaeeeai i?iaaaeaiiy /anoeiaiai aiae?oe/iiai iaa?iaiiy,
oiaoi ?aaoey?ecaoe?? ??. Oey i?ioeaaeo?a aeeth/a? iaa?iaiiy
/anoioii-caeaaeii? /anoeie, ui a?aeiia?aea? e?oaiaiio oeee?iae?o o
a?eueiiio i?inoi??. Aeei?enoiaoth/e aeanoea?noue i?oiaiiaeueiino?
aeniiiaio ? i?iaiaey/e ii/eaiia ?ioaa?oaaiiy, io?eio?ii iane?i/aiia
iao?e/ia ??aiyiiy O?aaeaieueia ae?oaiai ?iaeo o i?inoi?? l2 aeey
eiao?oe??io?a ?icaeiaiiy iiey.

?enoiie 1.

?en. 1. Ae?aeaeo?e/iee o?eueo? c OOA o ae?aeaeo?e/iiio oaeeaaiae?.

?enoiie 2.

?en. 2. Oa?aeoa?enoeee ?icn?yiiy ia e?oaiaiio oeee?iae?e/iiio Ae? ye
ooieoe?? ka ((b=10+0.01i, w/a=0.01, d/a=0.6, (s=2.25, w=b-a)

*eneiaa ?ica’ycaiiy oeueiai iao?e/iiai ??aiyiiy aeicaiey? iaea?aeaoe
aaee/eio iiaiiai iiey o eiaei?e oi/oe? i?inoi?o. O aeaeuei?e cii?
?icn?thaa/a oea iiea iiaeiii caaeiaieueiyoe iiaeeo?eiaai?e oiia?
aei?ii?ithaaiiy oa iiaea aooe i?aaenoaaeaii o oaeiio aeaeyae?:

?enoiie 3.

?en. 3. I?inoi?ia? ii?o?aoe iiey Ae?

WGE6,1 (ce?aa) ? WGE8,2 (ni?aaa)

?enoiie 4.

?en. 4. Oa?aeoa?enoeee ?icn?yiiy ia ooaoey?iiio Ae?.

– eiao?oe??ioe ia?aoai?aiiy iiae. I?aaenoaaeaii ?ethno?aoe?? /eneiaeo
?acoeueoao?a aeey eiao?oe??io?a ia?aoai?aiiy iiae, aei?ii?iaii? (Prad)
oa iiaeeiaii? (Pabs) /anoei iiooaeiino?. Aeey aea/aiiy oa?aeoa?enoee
o?eueo?a ia Ae? iaaeath/a iiea aa?aoueny o aeaeyae? iiey iiaa?oiaai?
oaee? ae?aeaeo?e/iiai oaeeaaiaea. Iiaeia aa/eoe, ui i?e ?icn?yii?
oaeeaaiaeieo iiae ia e?oaiaiio ae?aeaeo?e/iiio oeee?iae?? iathoue i?noea
?aciiaini? yaeua (?en. 2). Oea aeicaiey? canoiniaoaaoe oaeee Ae?, ye
nioaicaai?iaeaeoaaeuei? o?eueo?e o oaeeaaiaeao iiaa?oiaaeo oaeeue.
I?eioeei ?iaioe oaeeo o?eueo??a aaco?oueny ia caoaeaeaii? oaeeue OA
(WGE(H)m,n – iiaee o caeaaeiino? a?ae iiey?ecaoe??) a ?aciiaoi??. Ia?oee
?iaeaen m iicia/a? /enei aceiooaeueieo aa??aoe?e iiey, ae?oaee ?iaeaen n
iicia/a? /enei ?aae?aeueieo aa??aoe?e (?en. 3).

I?iaeaiiino?iaaii, ui o?eueo?e, ye? aiae?cothoueny, ? nei??oa
aeeneiaoeaieie i?ae ?aaeaeoi?ieie, iaa?oue yeui aiie aeaioiaeai? ?c
iaoa??aeo c iaeei oaiaainii eooa ao?ao. Iieacaii, ui aeeo/aiiy
ae?aeaeo?eea ?c oeaio?aeueii? /anoeie ?aciiaoi?a ia iioeiaeaeo?
WGE(H)m,1 ?aciiain?a, yeui aioo??oi?e ?aae?on e?eueoey ia iaaeeaea?oueny
aei eaonoeee, i?ioa aeicaiey? oieeiooe ia?aceoieo ?aciiain?a (?en. 4).
Aoei oaeiae aeyaeaii, ui iiyaa iiai? iiaa?oiaai? oaee? aeeeeea? ??ce?
ci?ie on?o oa?aeoa?enoee iiooaeiino?.

. Ooo ?aaeueia aaee/eia b – oa?aeoa?enoeea aaee/eie io/ea, eoo (, yeee
a?ae?aoiao?oueny a?ae a?n? IO, iieno? iai?yiie ?ooo io/ea. Oaea
aeaea?aei noai?th? iiea o aeaeyae? io/ea o ?aaeueiiio i?inoi??. Oea iiea
? oi/iei ??oaiiy ??aiyiiy Aaeueiaieueoea o aoaeue-ye?e oi/oe?
niinoa?aaeaiiy, ia a?aei?io a?ae aaoniaeo aeniiiaio, ui /anoi
aeei?enoiaothoueny aeey ai?ieneiaoe?? iie?a io/e?a o ia?aeneaeueieo
iaeanoyo. O?aaa a?aei?oeoe, ui iiooaei?noue, ui ia?aiineoueny iieai EAe,
ia? e?ioeaao aaee/eio, ia a?aei?io a?ae iiooaeiino? ieinei? oaee?.

?enoiie 5.

?en. 5. Iai?yieaiee aeaiaio ca’yceo ia OOA o ae?aeaeo?e/iiio oaeeaaiae?.

?enoiie 6.

?en. 6. Aoaeoeaiino? caoaeaeaiiy iiaa?oiaaeo oaeeue (((),
E-iiey?ecaoe?y. kb=0.5, yo/a=1, xo/a=1, (b=50, (s=2.25, (=180o,
w/a=0.01, d/a=0.6; a) c/a=0, b) c/a=0.7

Iaei??th c iaeaaaeeea?oeo oa?aeoa?enoee aeaiaioo ca’yceo ? eiai
aoaeoeai?noue, yea aecia/a?oueny ye a?aeiioaiiy iiooaeiino? caoaeaeaii?
o oaeeaaiae? iiaee, ui ?ooa?oueny c i?aaa iae?ai (c e?aa iai?aai) aei
iiooaeiino? iaaeath/iai io/ea. *eneia? ?ic?aooiee iieacothoue, ui
aeaiaio ca’yceo ia OOA ? cai?ioiueiiai?yieaiei: iiooaei?noue
caoaeaeoaaiiai iiey OOA ia?aea/o?oueny o iiooaei?noue iiaa?oiaai? oaee?,
yea ?ooa?oueny o iai?yieo, i?ioeeaaeiiio aei iai?yieo io/ea. Aoei oaeiae
iieacaii, ui ca aeiiiiiaith iai?yieaiiai aeaiaioo ca’yceo yeiaeiaio 50%
iiooaeiino? io/ea iiaea aooe ia?aoai?aii o iiooaei?noue iaei??? /e aeaio
iiaa?oiaaeo oaeeue (?en. 6)

(?en.7,9). ?icaeyiooi o?eueee aeiaaeie I-iiey?ecaoe??, oiio a?aie/ia
caaea/a iiaea aooe noi?ioeueiaaia aeey iaei??? eiiiiiaioe iaai?oiiai
iiey, Hz.

I?aaenoaaeyth/e ?icn?yia iiea o oi?i? iioaioe?aeo iiaea?eiiai oa?o oa
aa?o/e aei oaaae a?aie/i? oiiae, ie io?eio?ii a?ia?-neiaoey?ia ??. O
oeueiio aeiaaeeo iaa?aeiiith ooieoe??th ? u?euei?noue iiaa?oiaaiai oieo,
iaaaaeaiiai ia ae?ai? iaaeath/ei iieai. ssae?i ?? caeaaeeoue a?ae
»iaai?oii?» ooieoe?? A??ia iai?ai?inoi?o, iaiaaeaiiai a?aeaeaath/ith
iiaa?oiath. ??aiyiiy oaeiai oeio iiaeooue aooe ?ica’ycai? i?yiei
canoinoaaiiyi II. I?ioa, iaoiae eiai ?ica’ycaiiy, ui aaco?oueny ia
aiae?oe/iiio iaa?iaii? noaoe/ii? /anoeie caaea/? ?icn?yiiy o a?eueiiio
i?inoi??, ? cia/ii aoaeoeai?oei.

Ooieoe?y u?eueiino? oieo aeiiiaith?oueny ioeueiaei cia/aiiyi ia ioai??,
a iio?i ?icaeaa?oueny o ?yae ii eooiaei aeniiiaioai. Ii/eaiia
?ioaa?oaaiiy oa aeeoa?aioe?thaaiiy o ??, ?acii ?c ?iciiae?eii noaoe/ii?
oa aeeiai?/ii? /anoei ?ioaa?aeueiiai iia?aoi?o i?ecaiaeeoue aei ??aiyiue
o iiaea?eieo ?yaeao a eaiii?/i?e oi?i? aeey eiao?oe??io?a ?icaeiaiiy
ooieoe?? oieo. Aiae?oe/ia iaa?iaiiy noaoe/ii? /anoeie /eai?a oeeo
??aiyiue aeicaiey? io?eiaoe iane?i/aiia iao?e/ia ??aiyiiy O?aaeaieueia
ae?oaiai ?iaeo o i?inoi?? l2.

. Oaeei /eiii, caoaeoth/e ioa??, io?eio?ii i?i?aoth?iee ?aaeaeoi?iee
o?eueo? ?c aeoaea iecueeei ??aiai ia?aceoiiai aei?ii?ithaaiiy: a?eueo
i?ae 90% iiooaeiino? iiey, ui iaaea?, ia?aoai?th?oueny o iiooaei?noue
a?aeaeoi? iiaa?oiaai? oaee?. Aeiaaeie E-iiey?ecaoe?? ia ?icaeyaea?oueny,
ine?eueee iaeoe?eaa?oee iecueei/anoioiee ?aciiain o oeueiio aeiaaeeo ia
?nio?.

?enoiie 7.

?en. 7. Iaoaeaaee ?aaeaeoi?iee o?eueo? o ae?aeaeo?e/iiio oaeeaaiae?.

?enoiie 8.

E?oaiaee iaoaeaaee ae?ai iiaea aooe oaeiae canoiniaaii ye iiaeaeue
oeee?iae?e/iiai ?aoeaeoi?a (?en.9). ?aeaaeueii i?ia?aeiee iane?i/aiii
oiieee ?aoeaeoi? ?icoaoiaaii iaae ieineith iiaa?oiath c ?iiaaeainii ZoZ,
aea Zo – oea ?iiaaeain a?eueiiai i?inoi?o. Iiia?a/iee ia?a??c ?aoeaeoi?a
M ? e?oaiaith aeoaith ?aae?ono a, a?aenoaiue eiai a?ae caie? iicia/aia
ye c; eooiaa oe?eia aei??aith? 2(ap oa eoo iaoeeo aei a?n? IO — (o. Oi/a
?aaeuei? ?aoeaeoi?e iathoue ia?aaie?/io oi?io, aiie iiaeooue aooe aeia?a
ai?ieneiiaai? e?oaiaeie ?aoeaeoi?aie, yeui oieaeueia a?aenoaiue
ia?aaie?/ii? aeoae F ia? cia/aiiy iaaaaaoi a?eueoa, i?ae ?ici?? aia?oo?e
?aoeaeoi?a L.

io?eio?oueny ca aeiiiiiaith iaoiaeo ia?aaaeo aeey ?ic?aooieo ?ioaa?aeo
o oi?ioe? aeey ?icn?yiiai iiey. Eiao?oe??io iai?yieaii? ae?? (EIAe) o
iai?yieo aieiaiiai iaethnoea ae?aa?aie ?A, (=(o, oa aei?ii?iaia
iiooaei?noue iathoue oaeee aeaeyae:

.

?enoiie 9.

?en. 9. Aaiiao??y ?A

?enoiie 10.

?en. 10. Aoaeoeai?noue ( (a) ? EI G (b) ?A iaae ??cieie oeiaie iiaa?oi?,
c/a=1.01.

I?e i?iaaaeaii? ?ic?aooie?a ie ia?aee o?eniaaio aaiiao??th ?aoeaeoi?a oa
ii?ii?ithaa/a aeey oiai, uia cina?aaeeoe aiae?c ia aieeao caie? ia
oa?aeoa?enoeee ?A. ?icaeyaeaany ?aoeaeoi? c ?ici??aie L=10(, F/L=0.5
(ka=62.8, (ap=30o), yeee neiao?e/ii ii?ii?ithaaany iieai EAe ((=(o+(,
kb=3.5, oiaoi ??aaiue ii?ii?ithaaiiy e?ath aeca?eaea -13.29 dB),
?icoaoiaaiiai o aaiiao?e/iiio oieon? ?aoeaeoi?a. A?aeoeeaiiy oaeiai
e?oaiaiai ?aoeaeoi?a a?ae ia?aaiee neeaaea? iaioa 0.09(. Oi/a
?iiaaeainiee ia?aiao? Z, ui oa?aeoa?eco? aeanoeaino? caie?, cae/aeii ia?
iaaaeeea cia/aiiy, aea oey aaee/eia aieeaa? aeineoue iii?oii ia
aei?ii?ithaaiiy oa ?iciianthaeaeaiiy oaeeue. Ieae/a iaaaaeaii o?e
iniiai? aeiaaeee:

1) Z=0: ?aeaaeueii i?ia?aeia ieanoeia, ui iiaea aooe canoiniaaia ye
iiaeaeue ii?nueei? iiaa?oi?. Aoaeoeai?noue aei?ii?ithaaiiy o oeueiio
aeiaaeeo aei??aith? 100%, ine?eueee iaia? ao?ao ia iiaeeiaiiy /e
caoaeaeaiiy iiaa?oiaaeo oaeeue. 2) Z=-iY: ?iiaaeainia ieiueia aac ao?ao,
yea iiaea i?aeo?eioaaoe aa?oeeaeueii-iiey?eciaaio iiaa?oiaao oaeeth;
iiaea aooe canoiniaaia ye ?aeaae?ciaaia iiaeaeue oiieiai oa?o eueiaeo ia
iaoaeaaiio aeaoo, aai oiieiai oa?o nooiai i?neo ia iiaa?oi? aiaei?
caie?. O oeueiio aeiaaeeo iiaia iiea o aeaeuei?e cii? neeaaea?oueny ?c
aeaio /anoei: iiea, aei?ii?iaia o aa?oi?e iai?ai?ino??, yea ia?aiineoue
iiooaei?noue Prad, oa iiea iiaa?oiaaeo oaeeue, ui ?iciianthaeaeothoueny
ce?aa iai?aai oa ni?aaa iae?ai ? oa?aeoa?ecothoueny iiooaeiinoyie Psw(.
3) Z=X-iY: ?iiaaeainia ieiueia c ao?aoaie, ui iiaeaeth? iiaa?oith caie?
c aeia?eueieie aeanoeainoyie. O oeueiio aeiaaeeo e??i aei?ii?iaii?
iiooaeiino? Prad o?aaa ?ic?aoiaoaaoe ua ? iiooaei?noue, iiaeeiaio o
caie? Pabs. Aoaeoeai?noue aei?ii?ithaaiiy oa eiao?oe??io i?aeneeaiiy
io?eiothoueny, a?aeiia?aeii, ye

Ia ?en. 10 ii??aith?oueny aieea /ioe?ueio oei?a iiaa?oi? ia
aei?ii?ithaaiiy ?aoeaeoi?ii? aioaie: ii?nueea aiaea: ( =80, ( =1 S/m,
aai Z=0.0597-i0.0339; i??nia aiaea: (=80, ( =10-3 S/m, aai
Z=0.1118-i1.258(10-4; aieiaa caiey: (=20, ( =10-2 S/m, aai
Z=0.229-i10-2; oa nooa caiey /e i?nie: ( =4, ( =10-3 S/m, aai
Z=0.5-i1.123(10-2. On? iiooaeiino? ii?iae?ciaaii ia aaee/eio
iiooaeiino?, ui aei?ii?ith? oaea naia EAe, ?icoaoiaaia o a?eueiiio
i?inoi??: Po=2Zok-1Io(2kb), aea Io – oea iiaeeo?eiaaia ooieoe?y Aannaey.
I?enooi?noue ieinei? caiii? iiaa?oi? ia aieeaa? iii?oii ia aaee/eio
aei?ii?iaii? iiooaeiino?. Aaee/eia iiaeeiaii? iiooaeiino? iaea, aea
c?inoa? aeey aaeeeeo cia/aiue eooa iaoeeo (o, oiio ui o oeueiio aeiaaeeo
iaeaeaa aieiaeo iaethnoea “ia?ae?ao” oi?eathoueny caie?. Oea
i?ecaiaeeoue aei ciaioaiiy aoaeoeaiino? aei?ii?ithaaiiy ( aioaie, ui
iai?aaeaia o cai?o (?en. 10a). Eiao?oe??io i?aeneeaiiy ?A G iiaea
ci?ithaaoeny o iaaeao 10% o caeaaeiino? a?ae aeanoeainoae caie? oa eooa
iaoeeo aioaie, ye iieacaii ia ?en. 10b. Oea cia/eoue, ui oaeee aoaeo
iiaea iaoe i?noea i?ioyaii iaeiiai aeiy, caaaeyee aeneoaiith caie?
iaaeiei ?aoeaeoi?a.

O ?icae?e? 4 ?ic?iaeaiee o ia?oiio ?icae?e? aeai?eoi, yeee aaco?oueny ia
eiioeaioe?? aiae?oe/ii? ?aaoey?ecaoe??, ocaaaeueiaii aeey aoaeoeaiiai
?ica’ycaiiy aeaiaei??ii? caaea/? ?icn?yiiy oaeeue ia ae?aeaeo?e/ieo
oeee?iae?ao aeia?eueieo iiia?a/ieo ia?a??c?a. Aeei?enoiaoth/e
i?aaenoaaeaiiy iie?a o aeaeyae? iiaa?oiaaeo iioaioe?ae?a i?inoiai oa?o
ii eiioo?o ?icn?thaa/a, caaea/o caaaeaii aei nenoaie ?ioaa?aeueieo
??aiyiue ia?oiai ?iaeo oeio O?aaeaieueia. Ca aeiiiiiaith aeeo/aiiy ?
ianooiiiai aiae?oe/iiai iaa?iaiiy /anoeie yae?a ?ioaa?aeueiiai
iia?aoi?a, yea a?aeiia?aea? e?oaiaiio oeee?iae?o, oea ??aiyiiy
ia?aoai?aii o iane?i/aiia iao?e/ia ??aiyiiy O?aaeaieueia ae?oaiai ?iaeo,
yea ?ica’ycoaaeinue /enaeueii c aa?aioiaaiith oi/i?noth. I?e oeueiio
aeaiaioe ?aaoey?eciaaiiai iao?e/iiai ??aiyiiy, ye? io?eiai? i?ney
aeene?aoecaoe?? ??, iaei a?ae??ciythoueny a?ae aeaiaio?a ae?aaiiaeueii?
iao?eoe? o aeiaaeeo ?ica’ycaiiy caaea/? ?icn?yiiy ia oeee?iae?? c
oi?iith iiia?a/iiai ia?a??co, aeecueeith aei e?oao ?aae?ono a,
iaiaaeaiiai aeaaeeei eiioo?ii c e?eaeciith, aeecueeith aei 1/a. Oeaio?
oyae?iiy aeai?eoio, ui aaco?oueny ia oae?e noai?, ia?aiineoueny ia
aoaeoeaia ia/enethaaiiy eiao?oe??io?a ?iceeaaeo yaea? ?? o iiaea?ei?
?yaee Oo?’?. I?enei?aiiy ia/enethaaiiy ?ioaa?ae?a oaeiai aeaeyaeo aoei
aeinyaiooi ca aeiiiiiaith aeei?enoaiiy aeai?eoio oaeaeeiai ia?aoai?aiiy
Oo?’? (OIO). Aea/aii aeanoeaino? ?ic?iaeaiiai aeai?eoio ? i?iaaaeaii
eiai ii??aiyiiy c aeai?eoiii, ui aaco?oueny ia iaa?iaii? noaoe/ii?
/anoeie ?ioaa?aeueiiai iia?aoi?a.

Ca aeiiiiiaith ?ic?iaeaiiai aeai?eoio aoei ?ica’ycaii caaea/? ?icn?yiiy
iiaa?oiaai? oaee? oa oaeeaaiai io/ea EAe ia oeee?iae?ao ae?ioe/iiai,
i?yiieooiiai ? o?eeooiiai iiia?a/ieo ia?a??c?a, ui iiaeaeththoue
?aaeaeoi?i? o?eueo?e oa i?eciai? aeaiaioe ca’yceo o a?aee?eoiio
oaeeaaiae?. Aoei iieacaii, ui a ae?ioe/ieo oeee?iae?ao iaaaeeeiai
aenoeaio?eneoaoo iiaeeeaa ye caoaeaeaiiy iiaa?oiaaeo oaeeue oaii/oui?
aaea?a?, oae ? ia’?iieo ?aciiain?a. I?eioeei ?iaioe o?eueo??a ia iniia?
i?yiieooieo oeee?iae??a aai ae?ioe/ieo oeee?iae??a aaeeeiai
aenoeaio?eneoaoo aaco?oueny ia caoaeaeaii? o Ae? ia’?iieo ?aciiain?a.
Ia ?en. 12 cia?aaeai? oa?aeoa?enoeee ?icn?yiiy a aeaeuei?e cii? ye
ooieoe?? /anoioiiai ia?aiao?a ka aeey caaea/? ?icn?yiiy iiaa?oiaai?
oaee? ia eaaae?aoiiio oeee?iae?e/iiio ?aciiaoi?? (?en. 11) aeey aeiaaeeo
A-iiey?ecaoe??. Ia ?en. 13 i?aaenoaaeaia i?inoi?iaa ea?oeia iiey aioo??
Ae? a iaeiiio ?c ?aciiain?a. Ia?niaeoeaiei oaeiae oyaey?oueny
aeei?enoaiiy ae?ioe/ieo Ae? ?c oaeeyie oaii/oui? aaea?a?. Ine?eueee iiea
ciai? oaeiai Ae? a?eueoa neiioeaio?iaaii acaeiaae /anoei iiaa?oi? c
iaioith e?eaeciith, iiaeeeai io?eiaoe e?auo aca?iiae?th iiey ?aciiaoi?a
c iieai iiaa?oiaai? oaee?.

?enoiie 11.

?en. 11. I?yiieooiee ae?aeaeo?e/iee o?eueo? o oaeeaaiae?.

?enoiie 12.

?en. 12. Oa?aeoa?enoeee ?icn?yiiy ia eaaae?aoiiio Ae? ye ooieoe?? ka

((b=10, w/a=0.01, d/a=1, (s=2.25).

?enoiie 13.

?en. 13. I?inoi?iaee ii?o?ao iiey Ae? (ka=2.887)

I?ecia (?en. 14) iiaea aooe canoiniaaia ye ao?aeiee oa aeo?aeiee
aeaiaioe ca’yceo o a?aee?eoeo oaeeaaiaeao. ?en. 15 aeaiiino?o?
iiaeeea?noue aeei?enoaiiy i?ecie aeey aecia/aiiy a?aeiinii? iiooaeiino?
eiaeii? iiaa?oiaai? oaee? aaaaoiiiaeiaiai oaeeaaiaea, oiio ui iiea
eiaeii? aeanii? oaee? aeaiaeeoueny ?c oaeeaaiaeo /a?ac i?ecio i?ae
niaoeeo?/iei eooii.

?enoiie 14.

?en. 14. I?eciaiee aeaiaio ca’yceo o a?aee?eoiio oaeeaaiae?.

?enoiie 15.

?en. 15. Ae?aa?aie ?icn?yiiy iiaa?oiaaeo oaeeue ia o?eeooiiio
oeee?iae??. kb=3, a/b=1, (b=(s=2.13, w/b=0.0005 a) d/b=2 (QE=1), b)
d/b=6 (QE=2), c) d/b=10 (QE=3)

AENIIAEE

?ic?iaeaii oi/i? /eneia? aeai?eoie, ui oaeaeei ca?aathoueny, ia iniia?
eiioeaioe?? aiae?oe/ii? ?aaoey?ecaoe?? aeey iiaeaethaaiiy caaea/
aeeo?aeoe?? iiaa?oiaaeo oaeeue ? oaeeaaeo io/e?a ia ae?aeaeo?e/ieo ?
iaoaeaaeo oeee?iae?e/ieo ?icn?thaa/ao a?ey iaae? ?iciiae?eo na?aaeiaeu.

Noai?aii eiiieaen aoaeoeaieo i?ia?ai, ye? ?aae?cothoue oe? aeai?eoie ?
ia iio?aaothoue aaeeeeo ?ano?n?a iaoeiiiai /ano ? iai’yo?. On?
?acoeueoaoe io?eiai? /enaeueii c ??aiii??iith a?aeiiniith iioeaeith
10-4, i?ioa ?ic?iaeai? aeai?eoie aeicaieythoue i?i?i?coaaoe iioeaeo aei
10-14 oeyoii ??oaiiy iao?eoeue a?eueoiai ii?yaeeo.

Ca aeiiiiiaith /eneiaiai ?ica’ycaiiy a?aeiia?aeieo caaea/ aeeo?aeoe??
i?iaaaeaii aeaoaeueiee aiae?c oa?aeoa?enoee ?icn?yiiy iiaa?oiaaeo oaeeue
? oaeeaaeo io/e?a ia aeacaieo ia’?eoao. Na?aae aeyaeaieo iiaeo o?ce/ieo
aoaeo?a iio??aii aeacaoe: ?aciiainia c?inoaiiy ao?ao i?e caoaeaeaii?
oaeeue oaii/oui? aaea?a? a Ae?; iiaeeea?noue ?ic??aeaeaiiy niaeo?o Ae?
ca ?aooiie aeeo/aiiy ae?aeaeo?eea c oeaio?aeueii? /anoeie Ae?; ??cea
ciaioaiiy ao?ao o Ae? i?e caoaeaeaii? aoaeue-yei? oaee? aeuiai oeio a
ae?aeaeo?e/iiio oaeeaaiae?; iiaeeea?noue ca?eueoaiiy EIAe ?aoeaeoi?ii?
aioaie ca ?aooiie aeei?enoaiiy aeanoeainoae aeecueei ?icoaoiaaii?
iiaa?oi?.

Aeaii ?aeiiaiaeaoe?? uiaei canoinoaaiiy oeee?iae?e/ieo ae?aeaeo?e/ieo
?aciiaoi??a ? iaoaeaaeo ae?ai?a ye ooieoe?iiaeueieo aeaiaio?a
i?e?iao?iaiai, iioe/iiai oa IA* ae?aiacii?a aeiaaeei oaeeue, oaeeo ye
?aaeaeoi?i? oa nioaicaai?iaeaeoaaeuei? o?eueo?e, ao?aei? oa aeo?aei?
aeaiaioe ca’yceo, a oaeiae uiaei aeei?enoaiiy oeee?iae?e/iiai iaoaeaaiai
ae?aio ye aeca?eaea ?aoeaeoi?ii? aioaie, ?icoaoiaaii? iiaeeco
ia?aeaaeueii? iiaa?oi?.

NIENIE iioae?eiaaieo i?aoeue ca oaiith aeena?oaoe??

Boriskina S. V., Nosich A. I. Numerical simulation of surface-wave
bandstop filters // Microwave Optical and Technology Letters. — 1996. –
V. 13, ? 3. — P. 169-173.

Boriskina S. V., Nosich A. I. Numerical analysis of surface-wave filters
based on a whispering-gallery-mode dielectric resonator and a slitted
metal cavity // ?aaeeioeceea e ?aaeeiano?iiiiey. — 1997. — O. 2, ? 3. —
N. 333-341.

Ai?eneeia N.A. *eneaiiia enneaaeiaaiea oa?aeoa?enoee eceo/aiey
?aoeaeoi?iie aioaiiu aaeece iiaa?oiinoe caiee // Aanoiee Oa?ueeianeiai
oieaa?neoaoa. — 1998. -? 405. — P. 71-74.

Ai?eneeia N.A., Iine/ A.E. Iaoiae aiaeeoe/aneie ?aaoey?ecaoeee a
caaea/ao aeeo?aeoeee aiei ia aeeyeaeo?e/aneeo oeeeeiae?ao i?iecaieueiiai
iiia?a/iiai na/aiey // ?aaeeioeceea e ?aaeeiano?iiiiey. — 1998. — O. 3,
? 3. — N. 310-318.

Boriskina S.V., Nosich A.I. Radiation and absorption losses of the
whispering-gallery-mode dielectric resonators excited by a dielectric
waveguide // IEEE Transactions on Microwave Theory and Techniques. —
1999. -V. 47, ? 2. — P. 224-231.

Boriskina S. V., Nosich A. I. Reflection and scattering of the surface
wave from a circular cylindrical cavity-backed aperture // NRSC & QMW
Antenna Symposium Digest. — London (UK). — 1995.

Boriskina S. V., Nosich A. I. Effect of an imperfect ground on the
radiation of a reflector antenna // Proc. MIKON-96 Int. Conference. —
Warsaw (Poland). — 1996. — P. 255-258.

Boriskina S. V., Nosich A. I., Altintas A. Complex source — dual series
approach in simulating a reflector antenna radiating near an interface
// IEEE AP-S & URSI Int. Symposium Digest. — Baltimore (USA). — 1996. —
P.405.

Boriskina S. V., Nosich A. I. CAD-oriented analysis of two types of
surface-wave bandstop filters // Proc. MMET-96 Int. Conference. — Lviv
(Ukraine). — 1996. — P. 294-297.

Boriskina S. V., Nosich A. I. Numerically exact modeling the losses in
whispering-gallery-mode dielectric resonator exited by dielectric
waveguide // Proc. of Int. Colloquia on Hertzian Optics and Dielectrics
OHD’97. — Clermont-Ferrand (France). — 1997. — P. 260-262.

Boriskina S. V., Nosich A. I. CAD-oriented numerical analysis of
surface-wave filters // Proc. 22nd Int. Symp. on Infrared and Millimeter
Waves. — Wintergreen (USA). — 1997. — P. 324-327.

Boriskina S. V., Nosich A. I. Numerical simulation of whispering gallery
mode coupler in dielectric slab waveguide // Proc. MMET-98 Int.
Conference. — Kharkov (Ukraine). — 1998. — P. 810-812.

Boriskina S. V. Design of the whispering-gallery-E-mode dielectric-ring
filter in a dielectric waveguide // Proc. European Microwave Conference
(EuMC’98). — Amsterdam (the Netherlands). — 1998. — P. 202-204.

Boriskina S. V., Nosich A. I., Altintas A.A. Directivity and gain of
cylindrical reflector antenna in the vicinity of imperfect flat earth //
Proc. JINA’98. — Nice (France). — 1998. — P. 550-553.

Nosich A.I., Boriskina S.V. Design of the whispering-gallery-H-mode
dielectric-ring filter in a dielectric waveguide // Proc. Asia-Pasific
Microwave Conference (APMC’98). — Yokohama (Japan). — 1998. — P.
273-275.

Aiioaoe?y

Ai?ene?ia N.A. ?icn?yiiy iiaa?oiaaeo oaeeue oa io/e?a ia
iaiaeii??aeiinoyo o a?aee?eoeo oaeeaaiaeao ? ia ?aoeaeoi?ao. – ?oeiien.

Aeena?oaoe?y ia caeiaoooy iaoeiaiai nooiaiy eaiaeeaeaoa
o?ceei-iaoaiaoe/ieo iaoe ca niaoe?aeuei?noth 01.04.03-?aae?io?ceea.-
Oa?e?anueeee aea?aeaaiee oi?aa?neoao, i.Oa?e?a, 1999.

?icaeyaea?oueny caaea/a ?icn?yiiy iiaa?oiaai? oaee? ae?aeaeo?e/iiai
oaeeaaiaea ia ae?aeaeo?e/ieo ?aciiaoi?ao oa iaoaeaaeo ii?iaeienoeo
?aciiaoi?ao, aaaaeaiiy iie?a oaeeaaeo io/e?a o oaeee oaeeaaiae ca
aeiiiiiaith ae?aeaeo?e/ieo aeaiaio?a ca’yceo, a oaeiae caaea/a
aei?ii?ithaaiiy e?oaiai? oeee?iae?e/ii? ?aoeaeoi?ii? aioaie a?ey
ia?aeaaeueii? ieinei? caie?. Aeey io?eiaiiy iao?e/ieo ??aiyiue ae?oaiai
?iaeo oeia O?aaeaieueia aeei?enoiao?oueny iaoiae iiaa?oiaaeo
iioaioe?ae?a ? iaoiae aiae?oe/ii? ?aaoey?ecaoe??. Iai?yieaiee oa?aeoa?
iiey ii?ii?ithaa/a aeeth/aii aei aiae?co ca aeiiiiiaith iaoiaea
eiiieaeniiai aeaea?aea. ?ic?iaeaii aoaeoeai? /eneia? aeai?eoie, ye?
iiaeia canoinoaaoe aeey ?ic?iaee nioaicaai?iaeaeoaaeueieo o?eueo??a,
iai?yieaieo aeaiaio?a ca’yceo oa ?aoeaeoi?ieo aioai. Aeey aeaio
iiey?ecaoe?e ?ic?aoiaaii iiooaeiino? ia?aaeaii? oa a?aeaeoi? iiaa?oiaaeo
oaeeue, a oaeiae ao?aoe iiooaeiino? ia aei?ii?ithaaiiy oa iiaeeiaiiy o
?aciiaoi??. Aea/aii aoaeo caoaeaeaiiy iiaa?oiaaeo oaeeue aeueo ii?yaee?a
o oaeeaaiae?. ?ic?aoiaaii eiao?oe??io iai?yieaii? ae?? aioaie, ??
aoaeoeai?noue, eiao?oe??io i?aeneeaiiy, aei?ii?iaio oa iiaeeiaio /anoeie
iiooaeiino?, oa ii??aiyii ?o c aiaeia?/ieie oa?aeoa?enoeeaie aioaie,
?icoaoiaaii? o a?eueiiio i?inoi??. Aeyaeaii aeaye? aoaeoe, ui ia
iiaeooue aooe iienai? ca aeiiiiiaith i?eaeecieo iaoiae?a. Cai?iiiiiaaiee
iaoiae ocaaaeueiaii ia ?ica’ycaiiy caaea/ ?icn?yiiy oaeeue ia
ae?aeaeo?e/ieo oeee?iae?ao aeia?eueieo iiia?a/ieo ia?a??c?a.

Eeth/ia? neiaa: ae?aeaeo?e/iee ?aciiaoi?, oaee? oaii/oui? aaea?a?,
ii?iaeienoee iaoaeaaee ?aciiaoi?, nioaicaai?iaeaeoaaeueiee o?eueo?,
iai?yieaiee aeaiaio ca’yceo, ao?aoe, oeee?iae?e/iee ?aoeaeoi?,
eiiieaenia aeaea?aei, ia?aeaaeueia caiey, aiae?oe/ia ?aaoey?ecaoe?y.

SUMMARY

Boriskina S.V. Scattering of the surface waves and beams by open
waveguide discontinuities and by reflectors. –Manuscript.

Thesis for candidate’s degree by speciality 01.04.03 — Radio Physics. —
Kharkov State University, Kharkov, 1999.

The scattering of a dielectric layer surface wave from the dielectric
resonators and metal cavity resonators, coupling of an external beam
field into the same open waveguide by using dielectric couplers, as well
as the radiation of a circular cylindrical reflector antenna in the
presence of imperfect flat earth is considered. The surface potential
approach and the method of analytical regularization are exploited to
obtain the Fredholm second-kind matrix equations. The source directivity
is included in the analysis by using the complex source point method.
Efficient numerical algorithms are developed with application to the
design of bandstop filters and directional couplers, and reflector
antennas. Transmitted and reflected power fractions, radiation and
absorption losses, and coupling efficiencies are calculated for two
polarizations. Effect of the excitation of the higher-order modes of the
waveguide is studied. Various antenna features including the overall
directivity, efficiency, gain, radiated and absorbed power fractions are
calculated and compared with the free-space antenna characteristics.
They show some phenomena not predicted by approximate techniques. The
developed method is generalized to the solution of the problems of the
scattering from dielectric cylinders of arbitrary smooth cross-section
shape.

Key words: dielectric resonator, whispering-gallery-modes, metal cavity
resonator, bandstop filter, directional coupler, losses, cylindrical
reflector, complex source, imperfect earth, analytical regularization.

Aiiioaoeey

Ai?eneeia N.A. ?annayiea iiaa?oiinoiuo aiei e io/eia ia
iaiaeii?iaeiinoyo a ioe?uouo aieiiaiaeao e ia ?aoeaeoi?ao. – ?oeiienue.

Aeenna?oaoeey ia nieneaiea o/aiie noaiaie eaiaeeaeaoa
oeceei-iaoaiaoe/aneeo iaoe ii niaoeeaeueiinoe 01.04.03-?aaeeioeceea. —
Oa?ueeianeee ainoaea?noaaiiue oieaa?neoao, a. Oa?ueeia, 1999.

?anniio?aia caaea/a ?annayiey iiaa?oiinoiie aieiu aeeyeaeo?e/aneiai
aieiiaiaea ia aeeyeaeo?e/aneeo ?aciiaoi?ao e iaoaeee/aneeo iieuo
?aciiaoi?ao, caaea/a aaaaeaiey iieae aieiiauo io/eia a oaeie aieiiaiae n
iiiiuueth aeeyeaeo?e/aneeo yeaiaioia nayce, a oaeaea caaea/a eceo/aiey
e?oaiaie oeeeeiae?e/aneie ?aoeaeoi?iie aioaiiu a i?enoonoaee
iaeaeaaeueiie ieineie iiaa?oiinoe caiee. Aeey iieo/aiey iao?e/iuo
o?aaiaiee aoi?iai ?iaea oeia O?aaeaieueia eniieueciaai iaoiae
iiaa?oiinoiuo iioaioeeaeia e iaoiae aiaeeoe/aneie ?aaoey?ecaoeee. Aeey
aeeyeaeo?e/aneeo ?annaeaaoaeae aiaeeoe/aneay ?aaoey?ecaoeey iniiauaaaony
ia auaeaeaiee e ia?auaiee /anoe eioaa?aeueiiai iia?aoi?a,
niioaaonoaothuae caaea/a ?annayiey ia “yoaeiiiii” e?oaiaii oeeeeiae?a,
ieiuaaeue iiia?a/iiai na/aiey eioi?iai aeecea e ieiuaaee iiia?a/iiai
na/aiey enoiaeiiai oeeeeiae?a. Aeey iaoaeee/aneeo ?annaeaaoaeae
aiaeeoe/aneay ?aaoey?ecaoeey iniiauaaaony ia auaeaeaiee e ia?auaiee
noaoe/aneie /anoe eioaa?aeueiiai iia?aoi?a. Iieo/aiiua iao?e/iua
o?aaiaiey O?aaeaieueia aoi?iai ?iaea ?aoathony /eneaiii n
aa?aioe?iaaiiie oi/iinoueth.

Iai?aaeaiiue oa?aeoa? iiey eceo/aoaey i?e iiaeaee?iaaiee yeaiaioia nayce
e ?aoeaeoi?iuo aioaii aeeth/aaony a ?anniio?aiea n iiiiuueth
eniieueciaaiey iaoiaea eiiieaeniiai enoi/ieea. Aeiaaaeaiea iieiie /anoe
e eii?aeeiaoa eeiaeiiai enoi/ieea a aeaenoaeoaeueiii i?ino?ainoaa
i?eaiaeeo e iieo/aieth iai?aaeaiiie aeeaa?aiiu eceo/aiey. A aeaeueiae
ciia oaeia i?aaenoaaeaiea iiey eiaao aeae aaonniaa io/ea, ii aieaa
aaaeiui i?aaenoaaeyaony oio oaeo, /oi iii yaeyaony oi/iui ?aoaieai
o?aaiaiey Aaeueiaieueoea a ethaie oi/ea i?ino?ainoaa.

?ac?aaioaiu yooaeoeaiua /eneaiiua aeai?eoiu aeey iiaeaee?iaaiey
iieiniicaa?aaeaeathueo oeeueo?ia e iai?aaeaiiuo yeaiaioia nayce. Aeey
aeaoo iiey?ecaoeee ?ann/eoaiu e n?aaiaiu iiuiinoe i?ioaaeoeo e
io?aaeaiiuo iiaa?oiinoiuo aiei, a oaeaea iioa?e iiuiinoe ia eceo/aiea e
iiaeiuaiea a ?aciiaoi?a. Eco/ai yooaeo aicaoaeaeaiey iiaa?oiinoiuo aiei
aunoeo ii?yaeeia a aieiiaiaea. Iieacaii, /oi oaeaeaiea iaoa?eaea
aeeyeaeo?eea ec oeaio?aeueiie /anoe ?aciiaoi?a ia aeeyao ia
aicaoaeaeaiea ?aciiainia ia aieiao oai/ouae aaea?ae n iaeiie
?aaeeaeueiie aa?eaoeeae iiey, anee oieueei aioo?aiiee ?aaeeon ia
i?eaeeaeaaony e eaonoeea, ii i?e yoii ia aicaoaeaeathony ia?aceoiua
?aciiainu n ianeieueeeie ?aaeeaeueiuie aa?eaoeeyie iiey a Ae?. Auyniaii,
/oi ecae?aoaeueiue yeaiaio nayce ia AOA yaeyaony i?aeiouanoaaiii ia?aoii
iai?aaeaiiui: iiuiinoue iiey aieiu oai/ouae aaea?ae, aicaoaeaeaaiie a
Ae?, ia?aea/eaaaony a iiuiinoue iiaa?oiinoiie aieiu, ?ani?ino?aiythuaeny
a iai?aaeaiee, i?ioeaiiieiaeiii iai?aaeaieth iaaeaiey enoiaeiiai io/ea.
Iieacaii, /oi iiaeaee?oaiua oeeueo?u yaeythony nei?aa aeenneiaoeeiiiuie,
/ai ?aaeaeoi?iuie, aeaaea i?e eniieueciaaiee aeeyeaeo?eeia n i/aiue
iaeui oaiaainii oaea iioa?ue. I?iaeaiiino?e?iaaii, /oi eniieueciaaiea
iieiai iaoaeee/aneiai ?aciiaoi?a n ioaa?noeai nayce iicaieyao
oiaiueoeoue iioa?e ia eceo/aiea e ieieiece?iaaoue yeaeo?e/aneee ?acia?
oeeueo?a.

?ann/eoaiu ?acee/iua oa?aeoa?enoeee aioaiiu, aeeth/ay eiyooeoeeaio
iai?aaeaiiinoe, eiyooeoeeaio iieaciiai aeaenoaey, eiyooeoeeaio oneeaiey,
eceo/aiioth e iiaeiuaiioth /anoe iiuiinoe, e i?iaaaeaii eo n?aaiaiea n
aiaeiae/iuie oa?aeoa?enoeeaie aioaiiu, ?aniieiaeaiiie a naiaiaeiii
i?ino?ainoaa. Auyaeaiu iaeioi?ua yooaeou, eioi?ua ia iiaoo auoue iienaiu
n iiiiuueth i?eaeeaeaiiuo iaoiaeia. Iai?eia?, o?iaaiue aieiaiai
eceo/aiey, a neaaeiaaoaeueii, e eiyooeoeeaio iai?aaeaiiiai aeaenoaey,
iiaoo auoue eae aieueoa, oae e iaiueoa niioaaonoaothueo cia/aiee a
naiaiaeiii i?ino?ainoaa a caaeneiinoe io oaea iaeeiia e auniou iiaeuaia
aioaiiu. Anee aioaiia ?aaioaao i?e oeene?iaaiiii oaea iaeeiia, aa EIAe
iiaeao auoue oaaee/ai iooai eieaeueiie aeaoi?iaoeee iiaa?oiinoe caiee
aeey io?aaeaiey aieiauo «eaianoeia ia?aeeaa» a iai?aaeaiee aeaaiiai
eo/a. ?acieoea a cia/aiee EIAe iaeiie e oie aea aioaiiu iaae
iiaa?oiinoueth ii?y e nooie ii/aie iiaeao aeinoeaaoue 10% a iaeneioia
caaeneiinoe io oaea eceo/aiey.

I?aaeeiaeaiiue iaoiae iaiauai aeey ?aoaiey caaea/ ?annayiey aiei ia
aeeyeaeo?e/aneeo oeeeeiae?ao i?iecaieueiiai iiia?a/iiai na/aiey.
Aeaoaeueii eco/aiu naienoaa ?ac?aaioaiiiai aeai?eoia e i?iaaaeaii aai
n?aaiaiea n aeai?eoiii, iniiaaiiui ia ia?auaiee noaoe/aneie /anoe
eioaa?aeueiiai iia?aoi?a. I?eaiaeyony ?acoeueoaou ?an/aoia aeey
oeeeeiae?ia yeeeioe/aneiai e i?yiioaieueiiai e o?aoaieueiiai iiia?a/iuo
na/aiee, iiaeaee?othueo aeeyeaeo?e/aneea oeeueo?u a ioe?uouo aieiiaiaeao
e i?eciaiiua yeaiaiou nayce.

Eeth/aaua neiaa: aeeyeaeo?e/aneee ?aciiaoi?, aieiu oai/ouae aaea?ae,
iieue iaoaeee/aneee ?aciiaoi?, iieiniicaa?aaeaeathuee oeeueo?,
iai?aaeaiiue yeaiaio nayce, iioa?e, oeeeeiae?e/aneee ?aoeaeoi?,
eiiieaeniue enoi/iee, iaeaeaaeueiay caiey, aiaeeoe/aneay ?aaoey?ecaoeey.

Integrated Optics // Topics in Applied Physics / T. Tamir ed. —
Berlin: Springer-Verlag, 1979. — v. 7. — P. 85-107.

Kalinichev V. I. , Vadov P. N. A numerical investigation of the
excitation of a dielectric resonator // Soviet J. Commun. Technol.
Electronics (English Transl.). — 1998. — vol. 33. — N. 7. — P. 108-115.

Yarovoy A.G. Scattering from an internal penetrable inhomogeneity of a
dielectric slab waveguide // Microwave Optic. Technol. Lett. — 1994.
-7.- N4. — P. 178-182.

Oguzer T., Altintas A., Nosich A.I. Accurate simulation of reflector
antennas by the complex source-dual series approach // IEEE Trans.
Antennas. Propagat.-1995- 43.-N8.-P. 793-801.

Nosich A.I., Yurchenko V.B. , Altintas A. Numerically exact analysis of
a 2-D variable-resistivity reflector fed by a CSP // IEEE Trans.
Antennas Propagat. — 1997. — vol. 45. — N 11. — P. 1592-1601.

Altintas A., Yurchenko V.B., Nosich A.I. Smart radome improves
reflector antenna directivity // IEEE AP-S Int. Symp. Digest. — Montreal
(Canada). — 1997. — P. 510-513.

PAGE 3

Похожие записи