Iaoeiiiaeueia Aeaaeaiiy Iaoe Oe?a?ie

Iaoeiaee Oeaiop

«Iinoeooo yaea?ieo aeineiaeaeaiue»

OAeE 539.142

Eoe’yiia Na?aie Aieiaeeiepiae/

I?IOeANE ?AEAENAOeI? EIEAEOEAIEO

CAOAeAEAIUe O NEII*AIIEO

OA?II-NENOAIAO

Niaoeiaeueiinoue 01.04.16 — oiceea yae?a, aeaiaioa?ieo /anoeiie i

aenieeo aia?aie

Aaoi?aoa?ao

aeena?oaoei? ia caeiaoooy iaoeiaiai nooiaiy

eaiaeeaeaoa oiceei-iaoaiaoe/ieo iaoe

Ee?a — 1999

Aeena?oaoei?th ? ?oeiien.

?iaioa aeeiiaia o Iaoeiaiio Oeaiopi «Iinoeooo yaea?ieo aeineiaeaeaiue»

IAI Oe?a?ie.

Iaoeiaee ea?iaiee: aeieoi? oiceei-iaoaiaoe/ieo iaoe, i?ioani?,

caaiaeoaa/ aiaeaeieo

EIEIII?OeUe Aieiaeeie? Ieoaeeiae/

(IOe «Iinoeooo yaea?ieo aeineiaeaeaiue»)

Ioioeieii iiiiaioe: aeieoi? oiceei-iaoaiaoe/ieo iaoe,

i?ioani? eaoaaepe

?AEIA Noaiineaa Ieeieaeiae/

(Ee?anueeee iaoeiiiaeueiee oiiaa?neoao

ii. Oa?ana Oaa/aiea)

aeieoi? oiceei-iaoaiaoe/ieo iaoe,

i?iaiaeiee iaoeiaee niia?iaioiee

OO?NA Apeaaeie Aeieopiae/

(IOe «Iinoeooo yaeapieo aeineiaeaeaiue»)

I?iaiaeia onoaiiaa: Iinoeooo oai?aoe/ii? oiceee IAI Oe?a?ie,

aiaeaeie ipeeeaaeieo ipiaeai oaipaoe/ii?
oiceee

Caoeno aiaeaoaeaoueny 22 ea?oiy 1999 ?ieo i 14.15 aiaeeii ia caniaeaiii
niaoeiaeiciaaii? a/aii? ?aaee Ae 26.167.01 i?e Iaoeiaiio Oeaiopi
«Iinoeooo yaea?ieo aeineiaeaeaiue» IAI Oe?a?ie ca aae?anith: 252028
Ee?a, i?. Iaoee, 47.

C aeena?oaoei?th iiaeia iciaeiieoenue o aiaeiioaoei Iaoeiaiai Oeaiopo
«Iinoeooo yaea?ieo aeineiaeaeaiue» IAI Oe?a?ie

Aaoi?aoa?ao ?icineaiee 17 aa?aciy 1999 ?ieo.

A/aiee nae?aoa?

niaoeiaeiciaaii? a/aii? ?aaee
*aniieiaa A.Ae.

CAAAEUeIA OA?AEOA?ENOEEA ?IAIOE

Aeooaeueiinoue oaie

Ipe picpaooieao oapaeoapenoee eieaeoeaieo caoaeaeaiue o oieiaeieo
yaepao a paieao eiiaoe/ii? oaipi? piaiiaaaeia ooieoeiy piciiaeieo, ye
ipaaeei, aeaepa?oueny o aeaeyaei -ooieoei? a iiioeueniiio ipinoipi
(iaaeeaeaiiy Oiiana-Oapii). Ipioa, o oeieiio pyaei piaio aoei iieacaii,
ui aieiaieie iniaeeainoyie ooieoei? piciiaeieo a neii/aiieo
oapii-nenoaiao ? iayaiinoue aeeoociiai oapo ii iiioeuenao iiaeeco
iiaapoii Oapii oa inoeeeyoei? anapaaeeii. Ipepiaea oeeo iniaeeainoae
iia’ycaia c inioaaiiyi yaeapii? iiaapoii oa aiaeaeooyi aiae ia?
ioeeiiia.

Ineaaeaiiy aei? ipeioeeio Iaoei a iaeanoi aeeoociiai oapo ipeaiaeeoue
aei cpinoaiiy eiiaipiinoi picnithaaiiy ioeeiiia. Iaeiae apaooaaiiy eeoa
aeeoociiai eiiiiiaioa ooieoei? piciiaeieo oa iaoooaaiiy ?? inoeeeyoeiyie
aiineoue a oieiaeio oapii-nenoaio aeiaeaoeiaa caoaeaeaiiy, yea ia ia?
oice/iiai naino. O oeueiio aeiaaeeo, ipe picpaooieao aeaioieueieo oepei
aiaaionueeeo ioeueoeiieueieo paciiainia iopeiothoueny cia/ii
iapaaieueoaii aaee/eie. Caoaaaeeii, ui pieue inoeeeyoeie piaiiaaaeii?
ooieoei? piciiaeieo a ipioeanao aeeneiaoei? eieaeoeaieo caoaeaeaiue
caeeoaeany aei inoaiiueiai /ano iac’yniaaiith.

Aeooaeueiinoue aeenapoaoeieii? piaioe iieyaa? a iaiaoiaeiinoi aea/aiiy
ipioeania paeaenaoei? eieaeoeaieo caoaeaeaiue o neii/aiieo yaepao c
paaeinoe/iith ooieoei?th ?iciiaeieo, yea a apaoiaoaaea eaaioiai aoaeoe
aiaeaeooy ioeeiiia aiae iiaapoii yaepa.

Ca’ycie ?iaioe c iaoeiaeie oaiaie

?iaioo aeeiiaii o aiaeaeiei oai?i? yae?a IOe «Iinoeooo yaea?ieo
aeineiaeaeaiue» IAI Oe?a?ie caiaeii ieaio piaio ii oaii aiaeaeieo
«Iaepineiii/iee eieaeoeaiee poo i ipioeane paeaenaoei? a aoiiieo
yaepao».

Iaoa ?iaioe

Iaoa aeenapoaoei? iieyaaea o aeyaeaiii aieeao aeeoociinoi oa
inoeeeyoeie a iiioeueniiio ipinoipi piaiiaaaeii? ooieoei? piciiaeieo ia
ipioeane paeaenaoei? eieaeoeaieo caoaeaeaiue a aoiiieo yaepao.

Iaoeiaa iiaecia iaeapaeaieo pacoeueoaoia

A aeena?oaoe?ei?e ?iaio? aoei aiapoa

· iopeiaii caieiaiee ae?ac aeey eiaoioei?ioa caanaiiy eieaeoeaieo
caoaeaeaiue o oieiaeieo neii/aiieo oapii-nenoaiao c apaooaaiiyi
ipinoipiai?caeaaeiinoi /ano paeaenaoei? oa aoaeoia caiiciaiiy a
iioaa?aei cioeiaiue;

· iieacaii, ui piaiiaaaeia ooieoeiy piciiaeieo Aiaiapa caaeiaieueiy?
oiiaiaiaenooiinoi iioieia (ipeoieo oa aiaeoieo) eiiaipiinoae
picnithaaiiy ioeeiiia aeey yaepa a iniiaiiio noaii;

· picpaoiaaii ipinoipiaee piciiaeie aeaioieueii? paeaenaoei? a oieiaeieo
yaepao a oaeiae caeaaeiinoue oepeie aiaaionueeeo eaaaepoiieueieo
paciiainia(AE?) aiae ianiaiai /enea;

· iieacaii, ui iineeaiiy ipioeania paeaenaoei? coiiaeaia aeeoociinoth
piaiiaaaeii? ooieoei? piciiaeieo Aiaiapa iaeaea iiaiinoth eiiiaino?oueny
? ? inoeeeyoeiyie a iiioeueniiio ipinoipi;

· ipiaeaiiinopiaaii, ui aeaioieueia oepeia AE? aeey ooieoei? piciiaeieo
Aiaiapa aeiapa ocaiaeaeo?oueny c pacoeueoaoaie, iopeiaieie a iaaeeaeaiii
Oiiana-Oapii.

Ipaeoe/ia cia/aiiy iaeapaeaieo pacoeueoaoia.

Iaapoioiaaii ipaaiiipiinoue canoinoaaiiy iaaeeaeaiiy Oiiana-Oapii aeey
piaiiaaaeii? ooieoei? piciiaeieo a oieiaeiie neii/aiiie oapii-nenoaii
aeey ioeiiie napaaeiio oa iioaapaeueieo oapaeoapenoee caanaiiy
eieaeoeaiiai pooo a yaepao.

?acoeueoaoe, io?eiai? a aeena?oaoe??, aeathoue aeaoaeueio eapoeio
ipinoipiaiai piciiaeieo aeaioieueieo aeeneiaoeaieo ipioeania o
aeiaieueieo oapii-nenoaiao.

Iopeiaii aepace aeey iioaapaea cioeiaiue c aeiaieueiith piaiiaaaeiith
ooieoei?th piciiaeieo, eieaeueiiai iapaiaopa iiaeeiaiiy oa oepeie AE?
iiaeooue aooe aeeipenoaii ipe aea/aiii ipioeania aeeneiaoei? a yaepao
ipe neii/aiieo oaiiapaoopao.

Iaapoioiaaii iieiaeaiiy, ui aeey iiaiiai iieno ipioeania caanaiiy a
oieiaeieo yaepao, iepii aeaioieueiiai iaoaiicio paeaenaoei? iiopiaii
apaoiaoaaoe aeiaeaoeiai, oaei ye iaeiioieueiee oa oeoeooaoeieiee.

Iniaenoee aianie caeiaoaa/a

Aaoip aeenapoaoei? apaa o/anoue o aeaipi iaoiaeia pica’ycaiiy
iinoaaeaieo iapaae iei caaea/, aeeiiaiii aiaeioe/ieo picpaooieia,
aiaeici iopeiaieo pacoeueoaoia, iiaeaioiaoei poeiienia noaoae aei
iioaeieoaaiiy. Aii iiaiinoth naiinoieii caeienithaaa /enaeueii
picpaooiee.

O niieueieo ioaeieaoeiyo aaoipo iaeaaeaoue niinia ia/eneaiiy
aeeoociinoi onapaaeiaii? ooieoei? piciiaeieo, iaeay picaeyaeo
iiaeeoieiaaii? ooieoei? piciiaeieo oa canoinoaaiiy aiaeico oi/iinoi
iapaoaipaiue aiae iiioeuenia aei aiapaie a iioaapaei cioeiaiue.

Ai?iaaoeiy ?iaioe

Iniiaii ?acoeueoaoe i iieiaeaiiy aeena?oaoei? aoee i?aaenoaaeaii oa
aeiiiaiaeaeeny ia iaoeiaeo naiiiapao aiaeaeieo oaipi? yaepa IOe IssAe
IAI Oepa?ie (Ee?a, 1994-1998); ia uipi/ieo iaoeiaeo eiioapaioeiyo IOe
«Iinoeooo yaeapieo aeineiaeaeaiue» (1995 — 1998); ia 45-48
Iiaeiapiaeieo iapaaeao ii yaeapiie niaeopineiii? i nopoeoopi aoiiiiai
yaepa (1995 — 1998); ia Iiaeiapiaeiie eiioapaioei? ii aiaaionueeeo
paciiainao (Ioaeiy, i. Aapaia, 1998).

Ioaeieaoei?

Ca oaiith aeena?oaoei? aeeiiaii opeiaaeoeyoue ?iaio, /ioepe c yeeo
iioaeieiaaii o aeaeyaei noaoae. Nienie ioaeieaoeie iaaaaeaii a eiioei
aaoi?aoa?aoo.

Nopoeoopa aeenapoaoei?

Aeenapoaoeiy neeaaea?oueny ci anooio, opueio picaeieia, aeniiaeia,
aeiaeaoeia A i A oa nieneo aeeipenoaieo aeaeapae, yeee aeeth/a? 97
iaeiaioaaiue. Ia ii/aoeo eiaeiiai picaeieo aea?oueny eipioeee anooi, a a
eiioei — aieiaii pacoeueoaoe, yei iopeiaii a iie. Ia’?i aeenapoaoei? —
120 noip., aeeth/ath/e 15 penoieia.

INIIAIEE CIINO ?IAIOE

O anooii aeaii iaeyae eioapaoope, iaapoioiaaii aeooaeueiinoue oaie,
noipioeueiaaia iaoa oa aiaeiapaaeaii iaoeiao iiaecio i ipaeoe/io
oeiiiinoue iopeiaieo pacoeueoaoia, iiynith?oueny nopoeoopa a oaeiae
ipeaaaeaii aipiaaoeith aeenapoaoei?.

Iapoee picaeie ipenay/aiee aiaeioe/iiio picpaooieo eiaoioei?ioa
caanaiiy eieaeoeaieo caoaeaeaiue c apaooaaiiyi aoaeoia caiiciaiiy a
paieao eiiaoe/ii? oaipi?.

?iaiyiiy pooo iopeiothoueny oeyoii iioaapoaaiiy eiiaoe/iiai piaiyiiy
Eaiaeao-Aeaniaa c iioaapaeii cioeiaiue ii iiioeueno wmetafile8?
??¬???????????? ???????????yyy????.????1??????
??????? ?`???&??yyyy?????AyIy I ???&?
?MathType??P????u?th??????

A yeinoi eiiaapeciaaiiai iioaapaea cioeiaiue St aeeipenoaii aepac, a
yeiio apaoiaaii aoaeoe caiiciaiiy. Aeey oaeoipecaoei? eooiaeo oa
aiapaaoe/ieo iioaapaeia o St canoiniaaii iaoiae Aapeeiniaa-Oaeaoieeiaa.
Aepoaee iiiaio ii iiioeueno aiae St iapaoiao?oueny o iaaeeaeaiii /ano
paeaenaoei?. A pacoeueoaoi, aeey iaapiaii? aei eieaeueiiai /ano
paeaenaoei? aaee/eie, ui aecia/a? ipinoipiaee oapaeoap iiaeeiaiiy a
paaeeii piaeeeo cioeiaiue (eieaeueiiai iapaiaopa iiaeeiaiiy), iopeiaii
aepac

wmetafile8? ??V???????????
???????????yyy????.????1?????? ??????? 
????&??yyyy?????Ay?yA O ???&?
?MathType??@???u????????????-?????=@????=A???=????
=? ???=s???=° ???u?th??????

aea 2(r, ) — eieaeueiee /an paeaenaoei?, a iioaapaee cioeiaiue R()
iathoue aeaeyae

wmetafile8? ??&???????????
???????????yyy????.????1?????? ???????
??’???&??yyyy?????Ay°yA&° ???&? ?MathType?? ???u?th??????

wmetafile8? ??e???????????
???????????yyy????.????1?????? ???????
@ #???&??yyyy?????Ay«y`#e ???&? ?MathType??
???u????????????-?????

Ooo wmetafile8? ??TH????????????
???????????yyy????.????1?????? ??????? A
???&??yyyy?????Ayiya¬ ???&? ?MathType??@????u?th??????

wmetafile8? ??o???????????
???????????yyy????.????1?????? ???????  A

???&??yyyy?????Ay§y?

G ???&? ?MathType??p????u?th??????

Eiaooioei?ioe c2 oa d2 a iaaeeaeaiii iciopiiii? eiiaipiinoi picnithaaiiy
ioeeiiia aiaeiiaiaeii piaii 1/5 oa 4/5. Aianeiaeie apaooaaiiy aoaeoia
caiiciaiiy, aepac (1) aeey eieaeueiiai iapaiaopa iiaeeiaiiy caeaaeeoue
aiae /anoioe aeanieo eieeaaiue nenoaie .

Iioaapoaaiiyi ii ia’?io yaepa eieaeueieo piaiyiue pooo iopeiaii aepac
aeey eiaoioei?ioa caanaiiy (oepeie) eieaeoeaieo caoaeaeaiue

wmetafile8?
??O??????????? ???????????yyy????.????1??????
??????? ?A???&??yyyy?????Ay?y?? ???&?
?MathType??0???u????????????-?????1/2th???1/2p???u?th?
?????

aea Peq(r) — piaiiaaaeiee oene. Oeae aepac nipaaaaeeeaee ipe aeiaieueieo
niiaaiaeiioaiiyo iiae /anoioith eieaeoeaieo caoaeaeaiue oa /anoioith
cioeiaiue iiae ioeeiiaie, a oiio enei i a iapaoiaeiie iaeanoi iiae
aacciooiaooaaeueiei oa aiaepiaeeiaii/iei paaeeiaie.

O aepoaiio picaeiei aea/a?oueny iiaaaeiiea piaiiaaaeii? ooieoei?
piciiaeieo Aiaiapa o oaciaiio ipinoipi aeey neii/aiii? oieiaeii?
oapii-nenoaie. ?icaeyaea?oueny aeaa aeiaaeeenapaaeiueiai iiey —
opeaeiipiee iciopiiiee aapiiii/iee inoeeeyoip oa iioaioeiae
Aoaena-Naeniia.

O aeiaaeeo aapiiii/iiai inoeeeyoipa a yeinoi ooieoei? piciiaeieo acyoi
onapaaeiaio ii iaoiaeo Nopooeinueeiai eaaioiao ooieoeith piciiaeieo
Aiaiapa wmetafile8? ??*????????????
???????????yyy????.????1?????? ??????? ?
???&??yyyy?????AyAya@ ???&? ?MathType??p????u?th??????
Napaaeith iiaaaeiieo oei?? ooieoei? piciiaeieo iiaeia aipieneioaaoe ca
aeiiiiiaith piciiaeieo Oapii

wmetafile8? ?????????????
???????????yyy????.????1?????? ???????
a@???&??yyyy?????Ayµy?• ???&?
?MathType???????u????????????-?????

aea EF ? aiapaiy Oapii, a a — iapaiaoap aeeoociinoi. Aeey oiai, uia
aaee/eia iapaiaopa aeeoociinoi piciiaeieo Oapii oapaeoapecoaaea aaee/eio
picieooy onapaaeiaii? ooieoei? piciiaeieo Aiaiapa, caipiiiiiaaii
neiaeoth/ee aepac aeey eiai ia/eneaiiy

wmetafile8?
????????????? ???????????yyy????.????1??????
??????? ?A???&??yyyy?????Ay°y?° ???&?
?MathType?????u????????????-?????E???n????
???j???u?th??????

aea — aaee/eia iioapaaeo ia yeiio aiaeaoaa?oueny aipieneiaoeiy.
*enaeueii picpaooiee caiaeii (5) iieacaee, ui caeaaeiinoue iapaiaopa
aeeoociinoi a aiae ianiaiai /enea A iiaeia aipieneioaaoe
niiaaiaeiioaiiyi

a 10,2 A-1/6
MeB. (6)

O aieueo paaeinoe/iiio aeiaaeeo iioaioeiaea Aoaena-Naeniia aeeipenoaii
iaoiae ipaaenoaaeaiiy ooieoei? piciiaeieo o aeaeyaei pyaeo ii iieiiiiao
Apiioa. Oaeee piceeaae a pyae c iaiaaeaiith eieueeinoth /eaiia oeieeii
caaeiaieueii iapaaea? aieiaii iniaeeainoi ooieoei? piciiaeieo a
neii/aiiie oapii-nenoaii, a naia aeeoociinoue oa inoeeeyoei? a
iiioeueniiio ipinoipi (aeea. ?en.2). Ipioa, ia aiaeiiio aiae
aapiiii/iiai inoeeeyoipa, aaee/eie aeeoociinoi oa aiieiooaee inoeeeyoeie
caeaaeaoue aiae aiaenoaii aei oeaiopa yaepa r, caieueooth/enue ipe
iaaeeaeaiii aei eiai iiaapoii. Caoaaaeeii, ui piciiaeieo ia iiaeia
iioapipaooaaoe ye iaepineiii/io oiio, ui piceeaae ipiaiaeeoueny oaeo
ooieoeith aei /eaiia iipyaeeowmetafile8? ??¬????????????
???????????yyy????.????1?????? ???????
?A???&??yyyy?????Ay»y?» ???&? ?MathType??0????u?th??????
Neiae cacia/eoe, ui apaooaaiiy eeoa aeeoociiai eiiiiiaioa ooieoeie
piciiaeieo aiineoue o oieiaeio oapii-nenoaio aeiaeaoeiaa caoaeaeaiiy,
yea ia ia? oice/iiai naino. Uia oieeiooe oaeiai oeaiiai aoaeoo a
ipioeanao paeaenaoei?, iiopiaii apaoiaoaaoe oaeiae inoeeeyoei? ooieoei?
piciiaeieo feq a iiioeueniiio ipinoipi. Aeey iapaaipee oeueiai
oaapaeaeaiiy aoei picaeyiooi aepace aeey ipeoieiaiai oa aiaeoieiaiai
iioieia eiiaipiinoae picnithaaiiy /anoeiie

wmetafile8? ??°???????????
???????????yyy????.????1?????? ???????
@`&???&??yyyy?????AyYy &a ???&?
?MathType??a????u????????????-?????(???o???u?th??????

wmetafile8?
??-??????????? ???????????yyy????.????1??????
???????  ????&??yyyy?????Ay¬y@I ???&?
?MathType??P????u?th??????

wmetafile8? ??????????????
???????????yyy????.????1?????? ???????
@?’???&??yyyy?????AyYyA&a ???&?
?MathType??a????u????????????-????????a???u?th??????

wmetafile8?
??-??????????? ???????????yyy????.????1??????
???????  ????&??yyyy?????Ay¬y@I ???&?
?MathType??P????u?th??????

aea wmetafile8? ??O???????????
???????????yyy????.????1?????? ???????
@a???&??yyyy?????Ay?y e ???&? ?MathType??P????u?th??????

wmetafile8?
?????????????? ???????????yyy????.????1??????
??????? a`???&??yyyy?????Ay¬y ? ???&?
?MathType??????u????????????-?????3/4???? ???h
??? ???u?th??????

Ia ?en.3 ciapaaeaii pacoeueoao /enaeueiiai picpaooieo q aeey aeaio
aeiaaeeia iioaioeiaeia. Aeaeii, ui aaee/eia q ipaeoe/ii aeecueea aei
ioey. Oeei naiei iiaeoaapaeaeo?oueny ipeiouaiiy ipi aoaeo eiiiainaoei?
oeaiiai caoaeaeaiiy oapii-nenoaie inoeeeyoeiyie ooieoei? piciiaeieo.
Iaaaeeea aiaeiiiiinoue q aiae ioey ( 10-20 %) coiiaeaia iaoi/iinoth
iaoiaea Aapeeiniaa-Oaeaoieeiaa. Ca aeiiiiiaith iiaeeoieiaaii? ooieoei?
piciiaeieo

wmetafile8?
????????????? ???????????yyy????.????1??????
??????? `A ???&??yyyy?????Ay¬y?  ???&?
?MathType??p????u?th??????

aea Feq = feq — F, a — oaiiiaiieiai/iee iapaiaoap, iiaeia aeinyaoe
oiiae q=0. Iaipeeeaae, aeey yaepa A=224 iiaia cieeiaiiy ipeoieiaiai aai
aiaeoieiaiai iioieia eiiaipiinoae iopeio?oueny ipe =0,86. Oeth ooieoeith
piciiaeieo ciapaaeaii ia ?en.1 epaieaie.

Opaoie picaeie ipenay/aiee /enaeueiei picpaooieai aaee/ei, ui
oapaeoapecothoue ipioeane paeaenaoei? eieaeoeaieo caoaeaeaiue. A yeinoi
piaiiaaaeieo ooieoeie piciiaeieo aeeipenoaii picaeyiooi o aepoaiio
picaeiei ooieoei? piciiaeieo Aiaiapa aeey iioaioeiaeia aapiiii/iiai
inoeeeyoipa oa Aoaena-Naeniia. A iaio aeiaaeeao picpaoiaaii ipinoipiai
piciiaeiee eieaeueieo iapaiaopia iiaeeiaiiy h/2(r,0). ?acoeueoaoe
picpaooieia ciapaaeaii ia ?en.4 oa ?en.5. Aaee/eia h/2(r,0) ia?
aiaeiiiia aiae ioey cia/aiiy eeoa caaaeyee apaooaaiith aoaeoia
caiiciaiiy a iioaapaei cioeiaiue. Eieaeueii iapaiaope iiaeeiaiiy
ipiyaeythoue inoeeeyoei? ii ia’?io yaepa (epeai 1 ia iaio penoieao)
iaaeiei cia/aiiy, iopeiaiiai a iaaeeaeaiii Oiiana-Oapii (ioieoepii
eiii?). ?o aaee/eia inoioii iaioa aiae aiaeiiaiaeii? aaee/eie, iopeiaii?
c apaooaaiiyi eeoa aeeoociiai a iiioeueniiio ipinoipi eiiiiiaioa
piaiiaaaeii? ooieoei? piciiaeieo (epeai 2). Iaeneiaeueia aiieiooaea
inoeeeyoeie ipiyaey?oueny ia epath yaepa. Epeaa 3 ia ?en.4 aiaeiapaaea?
picpaooiie c iiaeeoieiaaiith ooieoei?th piciiaeieo (10).

?icpaoiaaii oaeiae caeaaeiinoi aeaioieueieo oepei AE? aiae ianiaiai
/enea. ?acoeueoaoe ipaaenoaaeaii ia ?en.6 oa ?en.7.Iopeiaii aaee/eie
oepei A iienothoue aeniapeiaioaeueii cia/aiiy eeoa ia 30 %. Oea iiaea
aooe iia’ycaii c oei, ui a aeaiiio aeineiaeaeaiii ia apaoiaoaaany oae
caaiee iaeiioieueiee iaoaiici paeaenaoei?, yeee iaoiiaeaiee cioeiaiiyie
/anoeiie c pooiiith iiaapoiath yaepa. Oeae iaoaiici aiaeiai/iee
opaaiaioaoei? aiaaionueeeo paciiainia o eaaioiaiiaoaii/ieo picpaooieao o
iaaeeaeaiii aeiaaeeiaeo oac. Caoaaaeeii, ui iao aeniiaie ipi
iaaeinoaoiinoue aeaioieueiiai iaoaiicio paeaenaoei? aeey iieno
aeniapeiaioaeueieo aeaieo

aeiapa ocaiaeaeo?oueny c pacoeueoaoaie aeineiaeaeaiue iioeo aaoipia.
Apaooaaiiy eeoa aeeoociiai a iiioeueniiio ipinoipi eiiiiiaioa
piaiiaaaeii? ooieoei? piciiaeieo aea? nooo?ai iapaaieueoaia cia/aiiy
aeaioieueii? oepeie AE?.

O aeniiaeao noi?ioeueiaaii iniiaii ?acoeueoaoe aeena?oaoei?.

O aeiaeaoeo A iaaaaeaii niinia picpaooieo iioaapaea cioeiaiue iaoiaeii
Aapeeiniaa-Oaeaoieeiaa.

O aeiaeaoeo A iaaaaeaii niinia picpaooieo iioaapaea cioeiaiue ipe
aeiaieueieo iiioeuenao /anoeiie ipe picnithaaiii.

AENIIAEE

1. Iopeiaii yaiee aepac aeey eieaeueiiai aeaioieueiiai iapaiaopa
iiaeeiaiiy c apaooaaiiyi aoaeoia caiiciaiiy o aeiaaeeo eaaaepoiieueii?
aeaoipiaoei? iiaapoii Oapii.

2. Iopeiaii caieiaiee aepac aeey oepeie aiaaionueeiai eaaaepoiieueiiai
paciiaino a paieao eiiaoe/ii? oaipi?. Oeae aepac nipaaaaeeeaee ipe
aoaeue-yeeo niiaaiaeiioaiiyo iiae /anoioith eieaeoeaieo caoaeaeaiue oa
/anoioith cioeiaiue iiae ioeeiiaie.

3. Caipiiiiiaaii aipieneiaoeith onapaaeiaii? eaaioiai? ooieoei?
piciiaeieo Aiaiapa ca aeiiiiiaith ooieoei? Oapii c ipinoipiai caeaaeiei
iapaiaopii aeeoociinoi a.

4. Anoaiiaeaii, ui aeey iioaioeiaeia aapiiii/iiai inoeeeyoipa oa
Aoaena-Naeniia, apaooaaiiy inoeeeyoeie a iiioeueniiio ipinoipi
piaiiaaaeii? ooieoei? piciiaeieo ipeaiaeeoue aei eiiiainaoei? aoaeoia,
iia’ycaieo c ?? aeeoociei eiiiiiaioii. Oaea ooieoeiy piciiaeieo
caaeiaieueiy? oiiai aiaenooiinoi ipeoieo oa aiaeoieo eiiaipiinoae
picnithaaiiy ioeeiiia aeey iniiaiiai noaio yaepa.

5. ?icpaoiaaii ipinoipiai piciiaeiee eieaeueiiai iapaiaopa iiaeeiaiiy
h/2(r,0). Iieacaii, ui apaooaaiiy inoeeeyoeie piaiiaaaeii? ooieoei?
piciiaeieo ipeaiaeeoue aei inoioiiai ciaioaiiy aaee/eie eieaeueiiai
iapaiaopa iiaeeiaiiy (ia 70 %), oa aei eiai ipinoipiaeo inoeeeyoeie
aiey cia/aiiy, iopeiaiiai o iaaeeaeaiii Oiiana-Oapii.

6. Aeey iaio oeiia iioaioeiaeia picpaoiaaii caeaaeiinoue aeaioieueii?
oepeie aiaaionueeiai eaaaepoiieueiiai paciiaino aiae ianiaiai /enea A.
Iopeiaia aaee/eia aeiapa ocaiaeaeothoueny ic pacoeueoaoii ?icpaooieia o
iaaeeaeaiii Oiiana-Oapii oa neeaaea? ipeaeecii 30 % aiae
aeniapeiaioaeueieo cia/aiue. Iieacaii, ui aeeipenoaiiy eeoa aeeoocii? a
iiioeueniiio ipinoipi ooieoei? piciiaeieo ipeaiaeeoue aei cia/ii
caaeuaieo cia/aiue oepei aiaaionueeeo paciiainia.

NIENIE IOAE?EAOe?E CA OAIITH AeENA?OAOe??

1. Eieiieaoe A.I., Eoeueyiia N.A., Ietheei A.A. Aeeyiea aeeooociinoe
noaoe/aneie ooieoeee panipaaeaeaiey Aeaiapa ia paeaenaoeeth eieeaeoeaiuo
aicaoaeaeaiee a oieiaeiuo yaepao // Eca. ?AI. Nap. oec. — 1997. —
O.61, N1. — N.113-121.

2. Eieiieaoe A.I., Eoeueyiia N.A., Ietheei A.A. Aeenneiaoeaiua naienoaa
eieeaeoeaiuo aicaoaeaeaiee a eiia/iie oapie-aeeaeeinoe a paieao
iieoeeanne/aneiai iiaeoiaea // Eca. ?AI. Nap. oec. — 1998. — T.62, N5.
— N.941-948.

3. Kolomietz V.M., Lukyanov S.V., Plujko V.A., and Shlomo S. Collisional
relaxation of collective motion in a finite Fermi liquid // Phys. Rev. —
1998. — V.C58. — P.198-208.

4. Eieiieaoe A.I., Eoeueyiia N.A., Ietheei A.A., Oeiii O. Aeaoooaeueiue
aeeaae a paeaenaoeeth eieeaeoeaiuo aicaoaeaeaiee a oieiaeiuo eiia/iuo
oapie-nenoaiao. // ssO. — 1999. — T.62, N1. — C.91-99.

5. Eieiieaoe A.I., Eoeueyiia N.A., Ietheei A.A. Oaiiapaoopiay
caaeneiinoue iioe/aneiai iioaioeeaea a paieao eeiaoe/aneiai iiaeoiaea //
Iaoapiaee uipi/ii? iaoeiai? eiioapaioei? Iinoeoooo yaeapieo
aeineiaeaeaiue IAI Oepa?ie. (Caipiee aeiiiaiaeae). — 1995. — N.34.

6. Eieiieaoe A.I., Eoeueyiia N.A., Ietheei A.A. Oaiiapaoopiay
caaeneiinoue iioe/aneiai iioaioeeaea a paieao eeiaoe/aneiai iiaeoiaea //
ssaeapiay niaeopineiiey e nopoeoopa aoiiiiai yaepa. — Oacenu aeieeaaeia
Iaaeaeoiapiaeiiai niaauaiey. — N.-Iaoapaopa. — 1995. — N.153.

7. Eieiieaoe A.I., Eoeueyiia N.A., Ietheei A.A. Oipiepiaaiea apaiai
paeaenaoeee eieeaeoeaiuo aicaoaeaeaiee a eiia/iie Oapie-nenoaia //
Iaoapiaee uipi/ii? iaoeiai? eiioapaioei? Iinoeoooo yaeapieo
aeineiaeaeaiue IAI Oepa?ie. (Caipiee aeiiiaiaeae). — 1996. — C.89-93.

8. Eieiieaoe A.I., Eoeueyiia N.A., Ietheei A.A. Aeeyiea aeeooociinoe
noaoe/aneie ooieoeee panipaaeaeiey Aeaiapa ia paeaenaoeeth eieeaeoeaiuo
aicaoaeaeaiee a oieiaeiuo yaepao // ssaeapiay niaeopineiiey e nopoeoopa
aoiiiiai yaepa. — Oacenu aeieeaaeia Iaaeaeoiapiaeiiai niaauaiey. —
Iineaa. — 1996. — C.287.

9. Eieiii?oeue A.I., Eoe’yiia N.A., Ietheei A.A., ?aaeiiiia N.A.
Iaoaiicie paeaenaoei? eieaeoeaieo caoaeaeaiue o neii/aiieo
Oapii-nenoaiao // Iaoapiaee uipi/ii? iaoeiai? eiioapaioei? Iinoeoooo
yaeapieo aeineiaeaeaiue IAI Oepa?ie. (Caipiee aeiiiaiaeae). — 1997. —
C.29.

10. Kolomietz V.M., Lukyanov S.V., Plujko V.A. The dissipative
properties of the excitations in the finite Fermi liquid within the
semiclassical approach // Proc. International Conf. on Phys. Atom.
Nuclei. «Properties of nuclei far of the stability valley». — Obninsk. —
1997. — P.238.

11. Kolomietz V.M., Lukyanov S.V., Plujko V.A. Relaxation of collective
excitations in cold finite Fermi systems // Iaoapiaee uipi/ii? iaoeiai?
eiioapaioei? Iinoeoooo yaeapieo aeineiaeaeaiue IAI Oepa?ie. (Caipiee
aeiiiaiaeae). — 1998. — C.24.

12. Kolomietz V.M., Lukyanov S.V., Plujko V.A., Shlomo S. The two-body
relaxation of the collective excitations in cold finite Fermi-systems
// Proc. International Topical Conf. on Giant Resonances. — Varenna
(Italy). — 1998. — P.18.

13. Kolomietz V.M., Lukyanov S.V., Plujko V.A. Relaxation of collective
excitations in cold finite Fermi systems. // Proc. International Conf.
on Phys. Atom. Nuclei. — Moscow. — 1998. — P.101.

Eoe’yiia N.A. Ipioeane paeaenaoei? eieaeoeaieo caoaeaeaiue o neii/aiieo
oapii-nenoaiao. — ?oeiien.

Aeena?oaoeiy ia caeiaoooy iaoeiaiai nooiaiy eaiaeeaeaoa
oiceei-iaoaiaoe/ieo iaoe ca niaoeiaeueiinoth 01.04.16 — oiceea yae?a,
aeaiaioa?ieo /anoeiie i aenieeo aia?aee. — IOe «Iinoeooo yaea?ieo
aeineiaeaeaiue» IAI Oe?a?ie, Ee?a, 1999.

Aeenapoaoeith ipenay/aii aeineiaeaeaiith ipioeania caanaiiy eieaeoeaieo
caoaeaeaiue o neii/aiieo oieiaeieo oapii-nenoaiao. ?icaeyae ipiaaaeaii a
paieao eiiaoe/ii? oaipi? c apaooaaiiyi aoaeoia caiiciaiiy a iioaapaei
cioeiaiue.

Aieiaio oaaao ipeaeieaii aea/aiith aieeao iniaeeainoae ooieoei?
piciiaeieo neii/aiieo oapii-nenoai ia oice/ii eipaeoiee iien ipioeania
caanaiiy.

Anoaiiaeaii, ui a oieiaeieo neii/aiieo yaepao iineeaiiy ipioeania
paeaenaoei? eieaeoeaieo caoaeaeaiue iaoiiaeaia aeeoociinoth
piaiiaaaeii? ooieoei? piciiaeieo Aiaiapa a iiioeueniiio ipinoipi
nooo?ai eiiiainothoueny aieeaii ?? inoeeeyoeie. ?icpaoiaaii ipinoipiai
piciiaeiee iapaiaopa iiaeeiaiiy, a oaeiae caeaaeiinoue aeaioieueii?
oepeie icineaeypiiai aiaaionueeiai eaaaepoiieueiiai paciiaino aiae
ianiaiai /enea.

Eeth/iai neiaa: eiiaoe/ia oaipiy, iioaapae cioeiaiue, ooieoeiy
piciiaeieo Aiaiapa, oapii-nenoaia, eieaeoeaii caoaeaeaiiy,
paeaenaoeiy, aiaaionueeee eaaaepoiieueiee paciiain

Eoeueyiia N.A. Ipioeannu paeaenaoeee eieeaeoeaiuo aicaoaeaeaiee a
eiia/iuo oapie-nenoaiao. — ?oeiienue.

Aeenna?oaoeey ia nieneaiea o/aiie noaiaie eaiaeeaeaoa
oeceei-iaoaiaoe/aneeo

iaoe ii niaoeeaeueiinoe 01.04.16 — oeceea yae?a, yeaiaioa?iuo /anoeoe e
aunieeo yia?aee. — IOe «Einoeooo yaea?iuo enneaaeiaaiee» IAI Oe?aeiu,
Eeaa, 1999. Aeenapoaoeey iinayuaia enneaaeiaaieth ipioeania caoooaiey
eieeaeoeaiuo aicaoaeaeaiee a eiia/iuo oieiaeiuo oapie-nenoaiao.
?anniiopaiea ipiaaaeaii a paieao eeiaoe/aneie oaipee n o/aoii aooaeoia
caiacaeuaaiey a eioaapaea noieeiiaaiee. Aeaaiia aieiaiea oaeaeaii
eco/aieth aeeyiey iniaaiiinoae ooieoeee

panipaaeaeaiey eiia/iuo oapie-nenoai ia oece/anee eippaeoiia iienaiea
ipioeania caoooaiey. Auyaeaii, /oi a oieiaeiuo eiia/iuo yaepao oneeaiea
ipioeania paeaenaoeee eieeaeoeaiuo aicaoaeaeaiee iaoneiaeaiiia
aeeooociinoueth paaiiaaniie ooieoeee panipaaeaeaiey Aeaiapa a
eiioeueniii ipinopainoaa nouanoaaiii eiiiainepoaony aeeyieai aa
inoeeeeyoeee. ?an/eoaiu ipinopainoaaiiua panipaaeaeaiey iapaiaopa
iiaeiuaiey, a oaeaea caaeneiinoue aeaoooaeueiie oepeiu ecineaeypiiai
aeaaioneiai eaaaepoiieueiiai paciiaina io ianniaiai /enea.

Eeth/aaua neiaa: eeiaoe/aneay oaipey, eioaapae noieeiiaaiee, ooieoeey
?anipaaeaeaiey Aeaiapa, oapie-nenoaia, eieeaeoeaiua aicaoaeaeaiey,
paeaenaoeey, aeaaioneee eaaaepoiieueiue paciiain

Lukyanov S.V. Relaxation processes of collective excitations in finite
Fermi systems. — Manuscript.

Dissertation for a degree of candidate of sciences (physics and
mathematics) by speciality 01.04.16 — physics of atomic nucleus,
elementary particles and high energies. — Scientific Centre «Institute
for Nuclear Research» NAS of Ukraine, Kyiv, 1999.

The dissertation is devoted to investigation of the relaxation of the
collective excitations in finite cold Fermi systems. The consideration
is carried out within the kinetic theory with taking into account the
memory effects in the collision integral. The main attention is focused
on the pecularities of the damping processes in the finite Fermi
systems. It was established that the enhancement of the relaxation of
the collective excitations in cold nuclei, cassed by the diffusivity of
the Wigner distribution function in the momentum space, is strongly
reduced due to its oscillations. The volume distributions of the damping
parameter and the dependence of the collisional width of the isoscalar
giant quadrupole resonance on the mass number were calculated.

Keywords: kinetic theory, collision integral, Wigner distribution
function, Fermi system, collective excitations, relaxation, giant
quadrupole resonance

Eoe’yiia Napaie Aieiaeeiepiae/

Ipioeane paeaenaoei? eieaeoeaieo caoaeaeaiue o neii/aiieo oapii-
nenoaiao. (Aaoipaoapao aeenapoaoei? ia caeiaoooy iaoeiaiai nooiaiy
eaiaeeaeaoa oiceei- iaoaiaoe/ieo iaoe.)

Iiaeienaii aei ae?oeo 01.03.99 ?. Oi?iao 60×90/16. Iaii? ion.

Ion. ae?oe. Oiiai. ae?oe. a?e. 0,87. Oe?aae 100 i?ei. Cai.

————————————————————————
—————————————-

IOe «Iinoeooo yaea?ieo aeineiaeaeaiue» IAI Oe?a?ie

252028, Ee?a-28, i?iniaeo Iaoee, 47

————————————————————————
—————————————-

Похожие записи