Ee?anueeee oi?aa?neoao ?iai? Oa?ana Oaa/aiea

IIA?EIA Ai?en Aieiaeeie?iae/

OAeE 512.664.4

EIAIIIEIA?? IAI?AA?OI

01.01.06 – aeaaa?a ? oai??y /enae

AAOI?AOA?AO

aeena?oaoe?? ia caeiaoooy iaoeiaiai nooiaiy

aeieoi?a o?ceei-iaoaiaoe/ieo iaoe

Ee?a-1999

Aeena?oaoe??th ? ?oeiien

?iaioa aeeiiaia a Oa?e?anueeiio aea?aeaaiiio oi?aa?neoao?

Io?oe?ei? iiiiaioe: aeieoi? o?ceei-iaoaiaoe/ieo iaoe,

I?OAEUeIA Ieaenaiae? Aaneeueiae/, i?ioani?, i?i?aeoi?, Iineianueeee
aea?aeaaiee oi?aa?neoao

?i. I. A. Eiiiiiniaa, i. Iineaa

aeieoi? o?ceei-iaoaiaoe/ieo iaoe,

III?CIANUeEEE ?ineo Nieiiiiiae/, i?ioani? eaoaae?e aeui? iaoaiaoeee,
?in?enueeee aea?aeaaiee a?ae?iiaoai?ieia?/iee oi?aa?neoao, i.
Naieo-Iaoa?ao?a

aeieoi? o?ceei-iaoaiaoe/ieo iaoe,

I?IOANIA ?ai? Aieiaeeie?iae/, i?ioani? eaoaae?e aeine?aeaeaiiy
iia?aoe?e, Ee?anueeee oi?aa?neoao ?iai? Oa?ana Oaa/aiea, i. Ee?a

I?ia?aeia onoaiiaa: Euea?anueeee aea?aeaaiee oi?aa?neoao ?i. ?. O?aiea,

i. Euea?a

Caoeno a?aeaoaeaoueny 30.08.1999 ?. i 14-00 aiaeei? ia can?aeaii?
niaoe?ae?ciaaii? a/aii? ?aaee Ae 26.001.18 i?e Ee?anueeiio oi?aa?neoao?
?iai? Oa?ana Oaa/aiea ca aae?anith 252127, i. Ee?a-127, i?iniaeo aeaae.
Aeooeiaa, 6, Ee?anueeee oi?aa?neoao ?i. O.Oaa/aiea,
iaoai?ei-iaoaiaoe/iee oaeoeueoao.

C aeena?oaoe??th iiaeia iciaeiieoenue o iaoeia?e a?ae?ioaoe?
oi?aa?neoaoo ca aae?anith: i. Ee?a, aoe. Aieiaeeie?nueea, 58.

Aaoi?aoa?ao ?ic?neaiee 14.07.1999 ?.

A/aiee nae?aoa?

niaoe?ae?ciaaii? a/aii? ?aaee EE?E*AIEI A.A.

CAAAEUeIA OA?AEOA?ENOEEA ?IAIOE

Aeooaeuei?noue oaie. Iaoiaee aiiieia?/ii? aeaaa?e i?ioyaii iaeaea
i?anoi??//y oni?oii aeei?enoiaothoueny aeey ?ica’ycaiiy caaea/ o
??ciiiai?oieo ?icae?eao iaoaiaoeee. Eeane/iei i?eeeaaeii ? aeei?enoaiiy
eiaiiieia?e ooiaeaiaioaeueieo a?oi oiiieia?/ieo i?inoi??a a aeaaa?a?/i?e
oiiieia??. Iaiao?aeii a?aecia/eoe oaeiae i?iia?nuee? ?iaioe

Ae. E. Oaaeae??aa ii iiaoaeia? eiaiiieia?e a?oi ye aia?aoa aeey
aeine?aeaeaiiy iioe?aiue a?oi.

C eiaiiieia?yie iai?aa?oi ni?aaa ianoi?oue ?iaeoa. Oi/a aiie
?icaeyaeaeeny aaea A. Ea?oaiii ? N. Aeeaiaa?aii o «Aiiieia?/i?e aeaaa??
» (? iaa?oue ?ai?oa – o noaooyo N. Aeeaiaa?aa ? N. Iaeeaeia 1945 – 51
??.), aea aiie ia caeo/aee aei naaa na?eicii? oaaae aeaaa?a?no?a. Oea
aeeeeeaii a ia?oo /a?ao oei, ui o?aea?ia? iioe?aiiy, iia’ycai? c 2- ?
3-aei??ieie eiaiiieia?yie Aeeaiaa?aa – Iaeeaeia (iaaeae? ie aoaeaii
iaceaaoe ?o AI-eiaiiieia?yie), ia a?athoue oaei? ?ie? i?e aeine?aeaeaii?
iiaoaeiae iai?aa?oi, ye o oai??? a?oi. I?ci?oa c’yaeany ?yae ?ia?o ([15
– 17] oa ?i.), o yeeo ii ??ciiiai?oieo (iao?aea?iaeo) oeiao iioe?aiue
iiaoaeiaaii iia? eiino?oeoe?? eiaiiieia?e iai?aa?oi. Noaei ynii, ui
canoinoaaiiy aiiieia?/ieo iaoiae?a o oai??? iai?aa?oi ia ae/a?io?oueny
AI-eiaiiieia?yie.

I?ioa aeine?aeaeaiiy AI-eiaiiieia?e iai?aa?oi i?iaeiaaeoaaeiny. Ia?oith
ooiaeaiaioaeueiith ?iaioith a oeueiio iai?yieo iiaeia aaaaeaoe noaooth
O. Ieei [19], o ye?e aea/aeeny eiaiiieia?? ??ciiiai?oieo oei?a
iai?aa?oi, ui iathoue yae?i Nooeaae/a (iaeiaioee aeaia?/iee ?aeaae), ?,
cie?aia, iienaii eiaiiieia?? oe?eeii i?inoeo iai?aa?oi (a?aecia/eii, ui
a oe?e ?iaio? c?iaeaii oaeiae ni?iao ca’ycaoe eiaiiieia?/io aei??i?noue
?c iiiyooyi neeaaeiino? iai?aa?oie, aaaaeaiei ?ioaenii ? ?i.).

Iaei cia/aiiy ? ?iaioa A. I?o/aeea [18], o ye?e, cie?aia, aea/aeany
eiaiiieia?/ia aei??i?noue iai?aa?oi. I?o/aee aeia?a, ui oae caaia
/anoeiai naiaiaeia iai?aa?oia (naiaiaeiee oa?? naiaiaeii? a?oie ?
naiaiaeii? iai?aa?oie) ia? eiaiiieia?/io aei??i?noue, yea aei??aith? 1,
? i?eionoea ii aiaeia?? c a?aeiiith oai?aiith Noiee?iana-Noiia, ui a??ii
e cai?ioia. I?ioa, aeena?oaioii o 1982 ?. aoa iioae?eiaaiee
eiio?i?eeeaae aei a?iioace I?o/aeea, ? oaeei /eiii, ieoaiiy i?i
aeanoeaino? iai?aa?oi aei??iino? 1 caeeoeeiny a?aee?eoei. Iaaeae? ?yae
aeaaa?a?no?a [10, 20] ?icaeyaeaa ieoaiiy i?i eiaiiieia?/io aei??i?noue
aeayeeo ??ciiaeae?a iai?aa?oi.

Ua iaeia iaeeane/ia eiino?oeoe?y eiaiiieia?e c’yaeeany a ?acoeueoao?
aea/aiiy i?iaeoeaieo cia?aaeaiue iai?aa?oi [7]. I?e oeueiio
ioeueoeie?eaoi? Oo?a yaey?oueny ia a?oiith, a eiiooaoeaiith ?iaa?niith
iai?aa?oiith. Inoaiiy ?, ye a?aeiii, iai?ano?oeoo?ith a?oi, yea, o naith
/a?ao, iieno?oueny ca aeiiiiiaith niaoe?aeueii? eiino?oeoe?? oae caaieo
0-eiaiiieia?e. Ie?aiee aeiaaeie 0-eiaiiieia?e (eiee ae?y iai?aa?oie ia
iiaeoe? o?ea?aeueia), aoa ?icaeyiooee O. Eea?eii [11] i?e aea/aii?
aoaeiae aeayeeo iao?e/ieo aeaaa?.

I?ci?oa aeena?oaioii aoei iieacaii, ui 0-eiaiiieia?? yaeythoueny
ei?enieie ? aeey ia/eneaiiy AI-eiaiiieia?e iai?aa?oi; naia c ?oiueith
aeiiiiiaith aoa iiaoaeiaaiee aeuacaaaeaiee eiio?i?eeeaae aei a?iioace
I?o/aeea.

Ia?aoo? a?aecia/eii na??th ?ia?o Oaeea, Ea?niia ? No?aeea?a [12 –14,
21], o yeeo iiaoaeiaaii oae caaiee iiii?ae A?aoa?a, ui iieno? eean
neeueii i?eia?ieo anioe?aoeaieo aeaaa? iiae?aii oiio, ye a?oia A?aoa?a
eeaneo?eo? oeaio?aeuei? i?ino? aeaaa?e. O aeena?oaoe?? iieacaii, ui
aea/aiiy iiii?aea A?aoa?a oaae caiaeeoueny aei 0-eiaiiieia?e.

Iaaaaeaiee aeua ei?ioeee iaeyae iieaco?, ui ca?ac eiaiiieia?? iai?aa?oi
ia o?eueee i?aaenoaaeythoue naiino?eiee ?ioa?an, aea ? ciaoiaeyoue
canoinoaaiiy a ?ioeo ?icae?eao aeaaa?e. Oei a?eueo aeooaeueiei noa?
ieoaiiy i?i ?ic?iaeo iaoiae?a ?oiueiai ia/eneaiiy. Oeueiio iai?yieo
i?enay/aii cia/io /anoeio aeena?oaoe??. E??i oiai, o i?e aeeeaaeathoueny
?acoeueoaoe canoinoaaiiy 0-eiaiiieia?e aei aea/aiiy aeanoeainoae
iiii?aea A?aoa?a ? aeine?aeaeothoueny iai?aa?oie eiaiiieia?/iie
aei??iino? 1.

O aeena?oaoe?? ia?aaaaeii aeei?enoiaothoueny iaoiaee aiiieia?/ii?
aeaaa?e, oai??? eaoaai??e ? oai??? iai?aa?oi.

Ca’ycie ?c iaoeiaeie i?ia?aiaie ? oaiaie. ?iaioo aeeiiaii ia eaoaae??
oai??? ooieoe?e ? ooieoe?iiaeueiiai aiae?co iaoai?ei-iaoaiaoe/iiai
oaeoeueoaoo Oa?e?anueeiai aea?aeaaiiai oi?aa?neoaoo.Aeine?aeaeaiiy, ye?
eaaee a iniiao aeaii? aeena?oaoe?eii? ?iaioe, i?iaiaeeeeny a?aeiia?aeii
aei

1) IAe? «Aeine?aeaeaiiy a oai??? iai?aa?oi ? noi?aeieo aaeocyo
iaoaiaoeee» (1994-95 ??., iiia? ?a?no?aoe?? 0194U012799);

2) IAe? «Aeine?aeaeaiiy c oai??? iai?aa?oi ? aiiieia?/ii? aeaaa?e»

(1996-97 ??., iiia? ?a?no?aoe?? 0197U009308).

Iaoith aeena?oaoe?? ?:

a) canoinoaaiiy 0-eiaiiieia?e aei aeine?aeaeaiiy aeanoeainoae iiii?aea
A?aoa?a;

a) iiaoaeiaa oai??? /anoeiaeo eiaiiieia?e iai?aa?oi ? aeei?enoaiiy ?o
aei ia/eneaiiy AI-eiaiiieia?e;

a) aea/aiiy aeanoeainoae eiaiiieia?/iie aei??iino? iai?aa?oi (a ia?oo
/a?ao, iai?aa?oi ?c nei?i/aiiyi).

Iaoeiaa iiaecia, oai?aoe/ia ? i?aeoe/ia oe?ii?noue. Aaaaeaii iiiyooy
iiaeeo?eaoe?? a?oie, ca aeiiiiiaith yeiai io?eiaii iia? aeanoeaino?
iiii?aea A?aoa?a.

Cai?iiiiiaaii iiao eiino?oeoe?th /anoeiaeo eiaiiieia?e iai?aa?oi,
aea/aii ?oi? aeanoeaino? (o oiio /ene? eio?i?/ia cia?aaeaiiy ? ca’ycie
?c AI-eiaiiieia?yie). C ?oiueith aeiiiiiaith ciaeaeaii a?oie
AI-eiaiiieia?e aeayeeo eean?a iai?aa?oi ?, cie?aia, iaaaaeaii na??th
eiio?i?eeeaae?a aei a?iioace I?o/aeea.

Aeiaaaeaii, ui iai?aa?oie ?c nei?i/aiiyi eiaiiieia?/ii? aei??iino? 1
aeeaaeathoueny aei naiaiaeii? a?oie. O eiiooaoeaiiio aeiaaeeo aeey oaeeo
iai?aa?oi io?eiaii iiaia iienaiiy.

An? iaea?aeai? a aeena?oaoe?ei?e ?iaio? ?acoeueoaoe ? iiaeie.

I?aeoe/ia cia/aiiy io?eiaieo ?acoeueoao?a. ?acoeueoaoe ? iaoiaee
aeena?oaoe?? iiaeooue aooe canoiniaai? a oai??? anioe?aoeaieo aeaaa?
(aeey eeaneo?eaoe?? aeaaa? ca aeiiiiiaith /anoeiaeo eiaiiieia?e), aeey
aea/aiiy iai?aa?oi ? ?ioeo aeaaa?a?/ieo nenoai iaei? eiaiiieia?/iie
aei??iino?, aeey aeyaeaiiy ca’yce?a i?ae oai???th iai?aa?oi ?
aeaaa?a?/iith oiiieia??th. Aiie oaeiae iiaeooue aooe aeei?enoai? a
iaa/aeueiiio i?ioean? i?e /eoaii? eaeoe?e ii niaoe?aeueiei eo?nai
«Aiiieia?/ia aeaaa?a», «Oai?ey iai?aa?oi» ? «Eiaiiieia?? a?oi ?
iai?aa?oi» ia iaoai?ei-iaoaiaoe/ieo ? o?ceei-iaoaiaoe/ieo oaeoeueoaoao
aeueo iaa/aeueieo caeeaae?a Oe?a?ie III ? IV ??aiy ae?aaeeoaoe??.

Iniaenoee aianie caeiaoaa/a. On? iaae?oeiaai? ?iaioe c oaie aeena?oaoe??
aeeiiaii aac ni?aaaoi??a, ca aeiyoeii [36] ? [40] (ni?aaaoi?e – I. N.
Eau??aa ? E. Ei?aeaeaa).

O iaio noaooyo aeena?oaioo iaeaaeaoue iinoaiiaee caaea/, a oaeiae
aeiaaaeaiiy oai?ai 1.1, 1.2 o [36] ? aeiaaaeaiiy on?o oai?ai o [40].

Ia caoeno aeiinyony ianooii? iniiai? iieiaeaiiy:

1. Aea/aiiy ca aeiiiiiaith /anoeiaeo eiaiiieia?e aeanoeainoae iiii?aea
A?aoa?a; iien aeayeeo oei?a iiaeeo?eaoe?e a?oi.

2. Iiaoaeiaa ? aeanoeaino? /anoeiaeo eiaiiieia?e iai?aa?oi; canoinoaaiiy
aei ia/eneaiiy eeane/ieo a?oi eiaiiieia?e.

3. Aeine?aeaeaiiy ??ciiiai?oieo eean?a iai?aa?oi eiaiiieia?/ii?
aei??iino? 1.

On? ?acoeueoaoe aeena?oaoe?? yaeythoueny iaoaiaoe/ieie oai?aiaie,
aeiaaaeaieie ia i?eeiyoiio a no/anii? iaoaiaoeoe? ??ai? no?iaino?.

Ai?iaaoe?y ?acoeueoao?a aeena?oaoe??. Iniiai? ?acoeueoaoe
aeena?oaoe?eii? ?iaioe aeiiia?aeaeeny ia oaeeo eiioa?aioe?yo,
neiiic?oiao ? nai?ia?ao:

XVI Ananithcia aeaaa?a?/ia eiioa?aioe?y – Eai?ia?aae, 1981;

XVII Ananithcia aeaaa?a?/ia eiioa?aioe?y – I?inuee, 1983;

XVIII Ananithcia aeaaa?a?/ia eiioa?aioe?y – Eeoei?a, 1985;

XIX Ananithcia aeaaa?a?/ia eiioa?aioe?y – Euea?a, 1987;

X Ananithciee neiiic?oi c oai??? a?oi – I?inuee, 1986;

III Ananithciee neiiic?oi c oai??? iai?aa?oi – Naa?aeeianuee, 1988;

?icoe?aiee aeaaa?a?/iee nai?ia? Ee?anueeiai oi?aa?neoaoo ?iai? Oa?ana
Oaa/aiea, i?enay/aiee 100-??//th c aeiy ia?iaeaeaiiy aeaaeai?ea I. TH.
Oi?aeoa – Ee?a, 1991;

?icoe?aiee aeaaa?a?/iee nai?ia? Ee?anueeiai oi?aa?neoaoo ?iai? Oa?ana
Oaa/aiea, i?enay/aiee 80-??//th ooiaeaoi?a eaoaae?e aeaaa?e ?
iaoaiaoe/ii? eia?ee i?io. E. A. Eaeoaei?ia – Ee?a, 1994;

I?aeia?iaeiee eieiea?oi c iai?aa?oi – Naaaae, Oai?ueia, 1994;

I?aeia?iaeia eiioa?aioe?y c aeaaa?e, eia?ee ? aeene?aoii? iaoaiaoeee –
I?o, THaineaa?y, 1995;

Ae?oaee ?a?iiaenueeee iaoaiaoe/iee eiia?an – Aoaeaiaoo, Oai?ueia, 1996;

I?aeia?iaeia eiioa?aioe?y c oai??? cia?aaeaiue ? eiii’thoa?ii? aeaaa?e a
Ee?anueeiio oi?aa?neoao? ?iai? Oa?ana Oaa/aiea – Ee?a, 1996;

I?aeia?iaeia aeaaa?a?/ia eiioa?aioe?y, i?enay/aia iai’yo? i?io.

E. I. Aeoneeia – Neia’yinuee, 1997.

Oace aeiiia?aeae iaae?oeiaaii a [41 – 47].

Ioae?eaoe??. Iniiai? ?acoeueoaoe aeena?oaoe?? iioae?eiaaii a 25
?iaioao, c ieo – 18 noaoae [22 – 40] , o oiio /ene? 2 noaoo? ?c
ni?aaaoi?aie ([36] ? [40]).

No?oeoo?a e ianya aeena?oaoe??. Aeena?oaoe?y neeaaea?oueny c anooio,
ie?aiiai ?icae?eo «Iicia/aiey ? aecia/aiiy», i’yoe aeaa ? nieneo
e?oa?aoo?e.

Aeieeaaei?oa:

aeaaa 1 «0-Eiaiiieia?? ? iiii?ae A?aoa?a» i?noeoue 5 ?icae?e?a;aeaaa 2
«*anoeia? eiaiiieia??» i?noeoue 7 ?icae?e?a;aeaaa 3 «Iai?aa?oie
eiaiiieia?/ii? aei??iino? 1» i?noeoue 4 ?icae?ee;aeaaa 4 «Eiaiiieia?? oa
?aoeaeoeai? i?aeeaoaai???» i?noeoue 5 ?icae?e?a;

aeaaa 5 «Caaaeueia oai??y eiaiiieia?e iai?aa?oi» i?noeoue 4 ?icae?ee.

Caaaeueiee ianya aeena?oaoe?eii? ?iaioe neeaaea? 281 noi?. Nienie
e?oa?aoo?e i?noeoue 122 iaeiaioaaiiy.

CI?NO ?IAIOE

Eiaeia aeaaa ii/eia?oueny c ioeueiaiai ?icae?eo «Iiia?aaei? a?aeiiino?»,
ui i?noeoue aeiaeaoeiao ?ioi?iaoe?th, iaiao?aeio aeey /eoaiiy ianooiieo
?icae?e?a oe??? aeaae.

Iaaaaea?ii nii/aoeo iaeia c aecia/aiue AI-eiaiiieia?e iai?aa?oie.

Iaoae S – aeia?eueia iai?aa?oia, A – aoaeue-yeee S-iiaeoeue (iaaeae? ie
?icaeyaea?ii o?eueee e?a? iiaeoe?). *a?ac Cn(S, A) iicia/a?ony a?oia
an?o n-i?noeaaeo a?aeia?aaeaiue

f: S SYMBOL 180 \f «Symbol» \s 14 ? SYMBOL 188 \f «Symbol» \s 14 1/4
SYMBOL 180 \f «Symbol» \s 14 ? S SYMBOL 174 \f «Symbol» \s 14 ® A

(a?oia n-aei??ieo eieaioetha?a); eia?aie/iee iia?aoi?

SYMBOL 182 \f «Symbol» \s 14 ¶ n : Cn(S, A) SYMBOL 174 \f «Symbol» \s
14 ® Cn+1(S, A)

caaea?oueny ianooiiei /eiii:

SYMBOL 182 \f «Symbol» \s 14 ¶ n f(x1, …, xn+1) = x1f(x2, …, xn+1)
+

Oiae? SYMBOL 182 \f «Symbol» \s 14 ¶ n SYMBOL 182 \f «Symbol» \s 14 ¶
n-1 = 0, oiaoi Im SYMBOL 182 \f «Symbol» \s 14 ¶ n-1 = Bn(S, A) (a?oia
n-aei??ieo eia?aieoeue) SYMBOL 205 \f «Symbol» \s 14 I Eer SYMBOL
182 \f «Symbol» \s 14 ¶ n = Zn(S, A) (a?oia n-aei??ieo eioeeee?a) ?
a?oie EM-eiaiiieia?e aecia/athoueny ye

Hn(S, A) = Zn(S, A) / Bn(S, A).

Aeaao 1 i?enay/aii canoinoaaiith aia?aoo 0-eiaiiieiaee, ?ic?iaeaiiai
aaoi?ii ?ai?oa [6]. O ?icae?e? 1.1 iaaiaeyoueny iaiao?aei? a?aeiiino?
i?i 0-eiaiiieia?? oa oai?aoeei-eaoaai?ia ?ioai?aoaoe?y iaea?aeaieo
eiino?oeoe?e.

Aeey aeia?eueii? iai?aa?oie S c ioeai 0-iiaeoeai iaae S iaceaa?oueny
aaaeaaa (aaeeoeaia) a?oia A, aeey ye?e aecia/aii iiiaeaiiy

S \ 0 SYMBOL 180 \f «Symbol» \s 14 ? A SYMBOL 174 \f «Symbol» \s 14 ®
A,

ui caaeiaieueiy? aeey an?o s, t SYMBOL 206 \f «Symbol» \s 14 I S \ 0,
a,b SYMBOL 206 \f «Symbol» \s 14 I A oaeei oiiaai:

s(a + b)=sa + sb,

st SYMBOL 185 \f «Symbol» \s 14 ? 0 SYMBOL 219 \f «Symbol» \s 14 U
s(ta)=(st)a.

n-Aei??iei 0-eieaioethaii caaoueny /anoeiaa n-i?noeaaa a?aeia?aaeaiiy ?c
S a A, aecia/aia ia an?o oaeeo iaai?ao (s1, SYMBOL 188 \f «Symbol» \s 14
1/4 , sn), ui

a?aeiia?aeii.

Iniiaiei o oe??? aeaa? ? ?icae?e 1.2, aea iaaaaeaii canoinoaaiiy
0-eiaiiieia?e aei aeine?aeaeaiiy iiii?aea A?aoa?a, aecia/aiiai a na???
?ia?o Oaeea, Ea?niia ? No?aeea?a [12 – 14, 21] aeey eeaneo?eaoe??
neeueii i?eia?ieo anioe?aoeaieo aeaaa?.

Aeey aecia/aiiy oeueiai eeano aeaaa? cao?eno?ii iniiaia iiea K ? aoaeaii
a iiaeaeueoiio ?icaeyaeaoe o?eueee ne?i/aiii aei??i? aeaaa?e iaae K.

Iaoae F/K – ne?i/aiia naia?aaaeueia iioe?aiiy. Oeaio?aeueia i?inoa
F-aeaaa?a B caaoueny ii?iaeueiith iaae K, yeui eiaeia i?inoa eiiiiiaioa
(iai?ai?inoi?) aeaaa?e B SYMBOL 196 \f «Symbol» \s 14 Ae K Bop
?ciii?oia iiai?e iao?e/i?e aeaaa?? iaae oeaio?ii oe??? eiiiiiaioe.

I?ae i?i?iaeueiei oi/iei iiaeoeai ?icoi??oueny oi/iee iiaeoeue, ui ia
ia? aeanieo oi/ieo i?aeiiaeoe?a.

K-Aeaaa?a A caaoueny neeueii i?eia?iith iaae K, yeui aeey ia?
aeeiiothoueny ianooii? oiiae:

1) yeui J – ?aaeeeae aeaaa?e A, oi oaeoi?aeaaa?a A/J yaey?oueny
naia?aaaeueiith, i?inoith ? ii?iaeueiith iaae K;

2) yeui A = B SYMBOL 197 \f «Symbol» \s 14 A J – ?iceeaaeaiiy
Aaaeaea?aapia – Iaeueoeaaa (oaea ?nio? a neeo naia?aaaeueiino? A/J), oi
A yaey?oueny i?i?iaeueiei oi/iei B SYMBOL 196 \f «Symbol» \s 14 Ae K
Bop-iiaeoeai a?aeiinii ae?? (x SYMBOL 196 \f «Symbol» \s 14 Ae K
yop)a=xay aeey x, y SYMBOL 206 \f «Symbol» \s 14 I B, a SYMBOL 206 \f
«Symbol» \s 14 I A.

Iai?eeeaae, oeaio?aeuei? i?ino? aeaaa?e yaeythoueny neeueii i?eia?ieie.

Iaoae oaia?, ye ? aeua, L – ii?iaeueia iioe?aiiy iiey K, G – a?oia Aaeoa
oeueiai iioe?aiiy. Iicia/eii /a?ac P eean on?o neeueii i?eia?ieo iaae K
aeaaa? A = B SYMBOL 197 \f «Symbol» \s 14 A J, oaeeo, ui oeaio?
i?yiiai aeiaeaieo B ciaoiaeeoueny a L.

A ?iaio? Oaeea [13] iieacaii, ui ia P iiaeia oae aaanoe aeaeaaeaioi?noue
? aeiaooie ia eeanao oe??? aeaeaaeaioiino?, ui io?eia?ii iiii?ae, yeee
iicia/a?oueny M(G, L) ? caaoueny (a?aeiiniei) iiii?aeii A?aoa?a. Ie ia
aoaeaii iienoaaoe oeth aeaeaaeaioi?noue ? a?aeiia?aeiee aeiaooie, oiio
ui ?oi? aecia/aiiy caeiathoue aeineoue aaaaoi i?noey ? ia
aeei?enoiaothoueny iiaeae?. A?aecia/eii o?eueee, ui ia eean?
oeaio?aeueieo i?inoeo aeaaa? aiie caiaeyoueny aei a?aeiieo eiino?oeoe?e
aeey a?oie A?aoa?a e ui a [13] iiaoaeiaaii oaeiae ? aaniethoiee iiii?ae
A?aoa?a iiey K, yeee yaey?oueny ia’?aeiaiiyi iiii?ae?a aeaeyaeo M(G, L),
eiee L i?ia?aa? an? (ne?i/aii?) ii?iaeuei? iioe?aiiy iiey K.

Aeey ne?i/aiiiai ii?iaeueiiai iioe?aiiy L iiey K ?c a?oiith Aaeoa G
aecia/aiiy iiii?aea A?aoa?a M(G, L) a?ae??ciy?oueny a?ae aecia/aiiy
a?oie eiaiiieia?e Aaeoa H2(G, L) o?eueee oei, ui eioeeeee iiaeooue
i?eeiaoe ? ioeueia? cia/aiiy. A ?acoeueoao? oeueiai iiii?ae A?aoa?a M(G,
L) yaey?oueny (eiiooaoeaiith) ?iaa?niith iai?aa?oiith ?, oaeei /eiii,
iai?ano?oeoo?ith aaaeaaeo a?oi M SYMBOL 101 \f «Symbol» \s 14 e (G, L),
aea SYMBOL 101 \f «Symbol» \s 14 e i?ia?aa? iiiaeeio an?o
?aeaiiioaio?a iiii?aea M(G, L).

A?oie M SYMBOL 101 \f «Symbol» \s 14 e (G, L) aeiioneathoue iienaiiy o
oa?i?iao 0-eiaiiieia?e. Naia, o oaaeeoe? iiiaeaiiy iai?aa?oie G0 = G
SYMBOL 200 \f «Symbol» \s 14 E 0 (a?oia c ciai?oiuei i?e?aeiaiei ioeai)
c?o?aii ci?no aeayeeo ?? ee?oei ? aieoaii a ieo 0, oae, uia iiaa
iia?aoe?y aoea anioe?aoeaiith. Io?eiaia iai?aa?oia iaceaa?oueny
iiaeeo?eaoe??th a?oie G. Cie?aia, aecia/ath/e aeey aeaiiai ?aeaiiioaioo
SYMBOL 101 \f «Symbol» \s 14 e ia G SYMBOL 200 \f «Symbol» \s 14 E 0
iiao iia?aoe?th SYMBOL 183 \f «Symbol» \s 14 · :

ie iaea?aeo?ii iiaeeo?eaoe?th, ui iicia/a?ii /a?ac G SYMBOL 101 \f
«Symbol» \s 14 e .

sse iieacothoue ianooii? aea? i?iiiceoe??, iiii?ae A?aoa?a aecia/a?oueny
iiaeeo?eaoe?yie:

Eaia 1.2.1 ?nio? aca?iii iaeiicia/ia a?aeiia?aei?noue i?ae
?aeaiiioaioaie iiii?aea A?aoa?a M( G, L) ? iiaeeo?eaoe?yie a?oie G.

– ae?oaa a?oia 0-eiaiiieia?e iiii?aea G SYMBOL 101 \f «Symbol» \s 14 e
.

O [14, 21] aeey aea/aiiy iieono?oeoo?e ?aeaiiioaio?a iiii?aea A?aoa?a
aeei?enoiaothoueny aeaye? /anoeiai oii?yaeeiaai? iiiaeeie, iacaai?
«noao?aeoeaieie cieco /anoeiai oii?yaeeiaaieie G-i?a?oaie».

A naia, iaoae, ye ? ?ai?o, G – ne?i/aiia a?oia, (Q, <) – /anoeiai oii?yaeeiaaia iiiaeeia c iaeiaioei aeaiaioii q ? caaeaii ae?th G SYMBOL 180 \f "Symbol" \s 14 ? Q SYMBOL 174 \f "Symbol" \s 14 ® Q : (g,x) SYMBOL 174 \f "Symbol" \s 14 ® g SYMBOL 42 \f "Symbol" \s 14 * x, oaeo, ui G SYMBOL 42 \f "Symbol" \s 14 * Q = Q. Iiiaeia Q caaoueny noao?aeoeaiith cieco /anoeiai oii?yaeeiaaiith G-i?aeoith, yeui aeey aoaeue-yeeo g, h SYMBOL 206 \f "Symbol" \s 14 I G, oaeeo, ui g SYMBOL 42 \f "Symbol" \s 14 * q < h SYMBOL 42 \f "Symbol" \s 14 * q, aeeiio?oueny oiiaa SYMBOL 34 \f "Symbol" \s 14 " f SYMBOL 206 \f "Symbol" \s 14 I G g SYMBOL 42 \f "Symbol" \s 14 * q < f SYMBOL 42 \f "Symbol" \s 14 * q < h SYMBOL 42 \f "Symbol" \s 14 * q SYMBOL 219 \f "Symbol" \s 14 U g-1f SYMBOL 42 \f "Symbol" \s 14 * q < g-1h SYMBOL 42 \f "Symbol" \s 14 * q O aeena?oaoe?? iieacaii, ui aeei?enoaiiy aeey oe??? iaoe iiaeeo?eaoe?e a?eueo ia?aaaaeii (aeea., iai?., iane?aeie 1.2.5). Iicia/eii /a?ac H i?aea?oio ia?aoeieo aeaiaio?a iiaeeo?eaoe?? G SYMBOL 101 \f "Symbol" \s 14 e . Aeeaaeaiiy H SYMBOL 200 \f "Symbol" \s 14 E 0 SYMBOL 174 \f "Symbol" \s 14 ® G SYMBOL 101 \f "Symbol" \s 14 e ?iaeoeo? aiiiii?o?ci O [14] i?e aeayeeo aeiaeaoeiaeo oiiaao anoaiiaeth?oueny ?i’?eoeai?noue a?aeia?aaeaiiy SYMBOL 106 \f "Symbol" \s 14 j . Ie ia/eneth?ii Ker SYMBOL 106 \f "Symbol" \s 14 j a ?io?e neooaoe??: Oai?aia 1.2.6. Iaoae iiaeeo?eaoe?y G SYMBOL 101 \f "Symbol" \s 14 e eiiiooaoeaia (?, ioaea, H, aoaeo/e i?aea?oiith oeaio?o a?oie G, ii?iaeueia). Iicia/eii /a?ac P i?aeiiea ia?ooiieo uiaei H aeaiaio?a c L. Oiae? ia? i?noea oi/ia iine?aeiai?noue Cai?iiiiiaaia a aeena?oaoe?? iiiyooy iiaeeo?eaoe?? a?oie iiaea i?aaenoaaeyoe, iiaeeeai, ? naiino?eiee ?ioa?an. I?ioa iiaia iienaiiy iiaeeo?eaoe?e yaey?oueny aeineoue aaaeeith caaea/ath iaa?oue aeey i?inoi oeaooiaaieo a?oi, ui ?ethno?o?oueny a ?icae. 1.3 ia i?eeeaae? aeinniaeo iiaeeo?eaoe?e i?inoi? oeeee?/ii? a?oie. Iaoae G – aeia?eueia ne?i/aiia a?oia. Iacaaii ?? iiaeeo?eaoe?th S = G0( SYMBOL 42 \f "Symbol" \s 14 * ) aeinniaith (ca aiaeia??th c a?aeiiith oiiaith Aeinna aeeaaeaiiy iai?aa?oie aei a?oie), yeui SYMBOL 34 \f "Symbol" \s 14 " a,b SYMBOL 206 \f "Symbol" \s 14 I S (a SYMBOL 42 \f "Symbol" \s 14 * S) SYMBOL 199 \f "Symbol" \s 14 C (b SYMBOL 42 \f "Symbol" \s 14 * S) SYMBOL 185 \f "Symbol" \s 14 ? 0 SYMBOL 219 \f "Symbol" \s 14 U (a SYMBOL 206 \f "Symbol" \s 14 I b SYMBOL 42 \f "Symbol" \s 14 * S) SYMBOL 218 \f "Symbol" \s 14 U (b SYMBOL 206 \f "Symbol" \s 14 I a SYMBOL 42 \f "Symbol" \s 14 * S) Cacia/eii, ui aeey aeinniaeo iiaeeo?eaoe?e 0-eiaiiieia?? yaeythoueny o?ea?aeueieie: aeey aoaeue-yeiai 0-iiaeoey A. Iaaeae? iaoae G = SYMBOL 225 \f "Symbol" \s 14 a a | ap = 1 SYMBOL 241 \f "Symbol" \s 14 n yaey?oueny oeeee?/iith a?oiith i?inoiai ii?yaeeo p SYMBOL 179 \f "Symbol" \s 14 ? 3 c ii?iaeaeoth/ei aeaiaioii a, a S – ?? eiiooaoeaiith aeinniaith iiaeeo?eaoe??th, ui a?ae??ciy?oueny a?ae G0( SYMBOL 215 \f "Symbol" \s 14 * ) (oiaoi x SYMBOL 42 \f "Symbol" \s 14 * y = 0 aeey aeayeeo x, y SYMBOL 206 \f "Symbol" \s 14 I G). (n ?ac?a). Oai?aia 1.3.3. sseui eiiooaoeaia aeinniaa iiaeeo?eaoe?y S a?oie G, yaey?oueny 2-ii?iaeaeaiith, oi aea 1 SYMBOL 163 \f "Symbol" \s 14 F k SYMBOL 163 \f "Symbol" \s 14 F p-1, 2 SYMBOL 163 \f "Symbol" \s 14 F m SYMBOL 163 \f "Symbol" \s 14 F p-1. Iane?aeie 1.3.4. E?euee?noue an?o ??cieo (aea, iiaeeeai, ?ciii?oieo) eiiooaoeaieo 2-ii?iaeaeaieo aeinniaeo iiaeeo?eaoe?e a?oiu G aei??aith? (p-1)(p-2)/2. A aeiaaeeo, eiee iiaeeo?eaoe?y 3-ii?iaeaeaia, neooaoe?y aeyaey?oueny a?eueo neeaaeiith: Oai?aia 1.3.6. sseui eiiooaoeaia aeinniaa iiaeeo?eaoe?y S a?oie G, yaey?oueny 3-ii?iaeaeaiith, oi aeey a?aeiia?aeiei caniaii aea?aiiai ii?iaeaeoth/iai aeaiaioa a aea 2 SYMBOL 163 \f "Symbol" \s 14 F m SYMBOL 163 \f "Symbol" \s 14 F p-2. O ?icae?e? 1.4 iieacaii i?eeiie ia/eneaiiy 0-eiaiiieia?e iiaeeo?eaoe?e ia i?eeeaae? oeeee?/ii? a?oie i'yoiai ii?yaeeo. Iniiai? ?acoeueoaoe oe??? aeaae iioae?eiaaii a [23, 25, 32]. Iiaeeea?noue i?eeeaaeaiiy 0-eiaiiieia?e aei ??ciiiai?oieo aeaaa?a?/ieo caaea/ (i?iaeoeai? cia?aaeaiiy iai?aa?oi, iao?e/i? aeaaa?e, iiii?aee A?aoa?a, ia/eneaiiy AI-eiaiiieia?e) i?eaiaeeoue aei iinoaiiaee ieoaiiy i?i ?o ocaaaeueiaiiy oeyoii ia?aoiaeo a?ae 0-eieaioetha?a aei aeia?eueieo (iane?eueee oea iiaeeeai) /anoeiaeo ooieoe?e ia iai?aa?oi?. Oaea aeine?aeaeaiiy i?iaiaeeoueny a aeaa? 2. Iaaaaea?ii aecia/aiiy ?aoeaeoeaii? i?aeeaoaai???. I?aeeaoaai?ey D eaoaai??? C caaoueny ?aoeaeoeaiith, yeui eiaeiiio ia'?eoo C SYMBOL 206 \f "Symbol" \s 14 I C c?noaaeaii ia'?eo RD(C) SYMBOL 206 \f "Symbol" \s 14 I D (yeee caaoueny D-?aoeaeoi?ii ia'?eoo C) ? ii?o?ci SYMBOL 101 \f "Symbol" \s 14 e D(C): C SYMBOL 174 \f "Symbol" \s 14 ® RD(C), oae?, ui aeey aoaeue-yeiai D SYMBOL 206 \f "Symbol" \s 14 I D ae?aa?aia iaeiicia/ii aeiiiaith?oueny aei eiiooaoeaii? ii?o?ciii c HomD (RD(C), D). Ie aoaeaii oaeiae aeei?enoiaoaaoe a iaca? ?aoeaeoi?a i?eeiaoiee, ui a?aeiia?aea? ?iai? ?aoeaeoeaii? i?aeeaoaai???. Iai?eeeaae, yeui C – eaoaai??y iai?aa?oi, a D – i?aeeaoaai??y a?oi, oi D-?aoeaeoi? aoaeaii caaoe oaeiae a?oiiaei ?aoeaeoi?ii. Aeey iiaoaeiae /anoeiaeo eiaiiieia?e oa iiia?aaeiueiai aeyaeaiiy ?oi?o aeanoeainoae c?o/ii aeei?enoiaoaaoe iiaeoe? ia iaae iai?aa?oiaie, a iaae /anoeiaeie a?oii?aeaie. Iaoae X – aeayeee /anoeiaee a?oii?ae. (E?aei) X-iiaeoeai caaoueny aaeeoeaia aaaeaaa a?oia A, aeey yei? aecia/aii ae?th X SYMBOL 180 \f "Symbol" \s 14 ? A SYMBOL 174 \f "Symbol" \s 14 ® A, caaeiaieueiyth/o aeey on?o x, y SYMBOL 206 \f "Symbol" \s 14 I X, a, b SYMBOL 206 \f "Symbol" \s 14 I A oaeei oiiaai: x(a+b)=xa+xb, xy SYMBOL 185 \f "Symbol" \s 14 ? SYMBOL 198 \f "Symbol" \s 14 AE SYMBOL 222 \f "Symbol" \s 14 TH x(ya) = (xy)a. Aiiiii?o?ciii X-iiaeoey A a X-iiaeoeue B caaoueny aiiiii?o?ci aaaeaaeo a?oi f : A SYMBOL 174 \f "Symbol" \s 14 ® B oaeee, ui SYMBOL 34 \f "Symbol" \s 14 " o SYMBOL 206 \f "Symbol" \s 14 I X SYMBOL 34 \f "Symbol" \s 14 " a SYMBOL 206 \f "Symbol" \s 14 I A f(oa) = of(a). Eaoaai??y X-iiaeoe?a iicia/a?oueny /a?ac Mod X. Aeey aeaiiai /anoeiaiai a?oii?aea X( SYMBOL 215 \f "Symbol" \s 14 * ) ?icaeyiaii iai?aa?oio SYMBOL 83 \f "Symbol" \s 14 S X( SYMBOL 42 \f "Symbol" \s 14 * ), ii?iaeaeaio iiiaeeiith X c aecia/ath/eie ni?aa?aeiioaiiyie aeaeyaeo o SYMBOL 42 \f "Symbol" \s 14 * y = oy, aea o,o SYMBOL 206 \f "Symbol" \s 14 I X ? oy SYMBOL 185 \f "Symbol" \s 14 ? SYMBOL 198 \f "Symbol" \s 14 AE . C a?aeiieo aeanoeainoae iai?aa?oie, ui caaeaia aecia/ath/eie ni?aa?aeiioaiiyie, aeo?ea? Eaia 2.1.1. Eaoaai??y iai?aa?oi Sem yaey?oueny ?aoeaeoeaiith i?aeeaoaai???th a eaoaai??? /anoeiaeo a?oii?ae?a PG; oi/i?oa, SYMBOL 83 \f "Symbol" \s 14 S X yaey?oueny iai?aa?oiiaei ?aoeaeoi?ii /anoeiaiai a?oii?aea X, a i?e?iaeia a?aeia?aaeaiiy SYMBOL 101 \f "Symbol" \s 14 e : X SYMBOL 174 \f "Symbol" \s 14 ® SYMBOL 83 \f "Symbol" \s 14 S X – ?aoeaeoi?iei ii?o?ciii. E??i oiai: Eaia 2.1.2. Eaoaai??? Mod X ? Mod SYMBOL 83 \f "Symbol" \s 14 S X yaeythoueny ?ciii?oieie. Iane?aeie 2.1.3. Mod X yaey?oueny aaaeaaith eaoaai???th, ui i?noeoue aeineoue aaaaoi ?i'?eoeaieo ? i?iaeoeaieo ia'?eo?a. Iaaeae? ie oe?eaaeoeiinue o?euee? oeie /anoeiaeie a?oii?aeaie, ye? yaeythoueny i?aeiiiaeeiaie iai?aa?oi. Iaoae S – aoaeue-yea iai?aa?oia. Iacaaii i?aeiiiaeeio X SYMBOL 205 \f "Symbol" \s 14 I S ei?iai iai?aa?oie S, yeui S = SYMBOL 225 \f "Symbol" \s 14 a X SYMBOL 241 \f "Symbol" \s 14 n ? aeeaaeaiiy X aei S ?iaeoeo? ?ciii?o?ci S SYMBOL 64 \f "Symbol" \s 14 @ SYMBOL 83 \f "Symbol" \s 14 S X. Eaaei aeiaanoe, ui X yaey?oueny ei?iai a S oiae? ? o?eueee oiae?, eiee S= SYMBOL 225 \f "Symbol" \s 14 a X | xy = z (x, y, z SYMBOL 206 \f "Symbol" \s 14 I X) SYMBOL 241 \f "Symbol" \s 14 n . Iai?eeeaae, iai?aa?oia S yaey?oueny nai?i ei?iai, ine?eueee S = SYMBOL 225 \f "Symbol" \s 14 a S SYMBOL 241 \f "Symbol" \s 14 n . sseui caaeaia aeia?eueia ciaaaeaiiy iai?aa?oie S = SYMBOL 225 \f "Symbol" \s 14 a a1, SYMBOL 188 \f "Symbol" \s 14 1/4 , am | P1 = Q1, SYMBOL 188 \f "Symbol" \s 14 1/4 , Pn = Qn SYMBOL 241 \f "Symbol" \s 14 n , oi i?aeiiiaeeia, ui neeaaea?oueny c on?o ii?iaeaeoth/eo aeaiaio?a a1, SYMBOL 188 \f "Symbol" \s 14 1/4 , am ? on?o i?aene?a ne?a Pi ? Qi (1 SYMBOL 163 \f "Symbol" \s 14 F i SYMBOL 163 \f "Symbol" \s 14 F n) a aaaooe? a1, SYMBOL 188 \f "Symbol" \s 14 1/4 , am, yaey?oueny ei?iai (i?e/iio eaaei aa/eoe, ui eiaeiee ei??iue iiaeia iaea?aeaoe aiaeia?/iei niiniaii). Ia?oei e?ieii o oeueiio iai?yieo ? aecia/aiiy iaeiiaei??iiai /anoeiaiai eieaioethaa (aai X-eieaioethaa) ye ooieoe?? ia o?eniaai?e i?aeiiiaeei? X SYMBOL 204 \f "Symbol" \s 14 I S, ui ii?iaeaeo? iai?aa?oio S. I?e oeueiio cia/aiiy /anoeiaiai eieaioethaa aa?ooueny c aeayeiai X-iiaeoey A. Aeae?, iicia/eii /a?ac Xn iiiaeeio on?o iaai??a (n ?ac?a) o yeeo xi xi+1…xj SYMBOL 206 \f "Symbol" \s 14 I X aeey aoaeue-yeeo i, j oaeeo, ui 1 SYMBOL 163 \f "Symbol" \s 14 F i SYMBOL 163 \f "Symbol" \s 14 F j SYMBOL 163 \f "Symbol" \s 14 F n. Oiae? n-aei??iee /anoeiaee eieaioetha aecia/a?oueny ye a?aeia?aaeaiiy Xn o A. Aecia/ath/e cae/aeiei caniaii eia?aie/i? aiiiii?o?cie, ie iaea?aeo?ii a?oie /anoeiaeo eiaiiieia?e Hn(S, X, A). *anoeiieie aeiaaeeaie oe??? eiino?oeoe?? yaeythoueny AI-eiaiiieia?? (i?e X = S) ? 0-eiaiiieia?? (yeui S i?noeoue 0 ? X = S \ 0). Aeey i?aeiiiaeeie X iai?aa?oie S, ui ?icaeyaea?oueny ye /anoeiaee a?oii?ae, ?aoeaeoi?iee ii?o?ci (: X ( (X, i/aaeaeii, yaey?oueny aeeaaeaiiyi. Oiio X iiaeia oaeiae ?icaeyaeaoe ye i?aeiiiaeeio a (X, ? i?e oeueiio iiiaeeie Xn ia ci?iyoueny. Ioaea, ia? i?noea ?ciii?o?ci Hn (S, X, A) ( Hn ((X, X, A), ?, oaeei /eiii, i?e aea/aii? /anoeiaeo eiaiiieia?e iiaeia iaiaaeeoeny aeiaaeeii, eiee X – ei??iue iai?aa?oie S. Aeeaaeaiiy X SYMBOL 204 \f "Symbol" \s 14 I S ?iaeoeo? aiiiii?o?cie ?ciii?o?ciaie i?e n > 0?

– ?ciii?o?ci.

– iiiiii?o?ci.

iiaea ia aooe ?ciii?o?ciii (a?aeiia?aeiee i?eeeaae iaaaaeaii a e?ioe?
oeueiai ?icae?eo).

Ia aea/aiiy /anoeiaeo eiaiiieia?e iai?aa?oie aieeaa? ?nioaaiiy a i?e
iaeeie/iiai aeaiaioo. Iai?eeeaae, i?e aeeth/aii? iaeeieoe? aei ei?aiy
oneeaaeith?oueny, acaaae? eaaeo/e, i?ioean ia/eneaiiy /anoeiaeo
eiaiiieia?e. Oiio i?aaenoaaey?oueny aeioe?eueiei ?icaeyiooe ie?aii
niaoeeo?/i? aeanoeaino? eiaiiieia?e iiii?ae?a. Oaea aeine?aeaeaiiy
i?iaaaeaii a ?icae?e? 2.2.

Iaoae S – aeayeee iiii?ae c iaeeieoeath 1, X – eiai i?aeiiiaeeia, ui
eiai ii?iaeaeo? (yea ia iaia’yceiai ? ei?aiai) ? i?noeoue 1, A –
aeia?eueiee oi?oa?iee X-iiaeoeue. Aaaaeaii iicia/aiiy T = (X \ 1(.

Oai?aia 2.2.1. Iaoae aeeiio?oueny ianooiia oiiaa: yeui x, y SYMBOL 206
\f «Symbol» \s 14 I X ? xy = 1, oi x = y = 1. Oiae? a?aeia?aaeaiiy

,

, yaey?oueny ?ciii?o?ciii aeey on?o n SYMBOL 179 \f «Symbol» \s 14 ?
0.

Ca?aene, cie?aia, aeieeaa?, ui ciai?oi? i?e?aeiaiiy iaeeieoe? aei
iai?aa?oie ia aieeaa? ia ?? /anoeia? eiaiiieia??:

Iane?aeie 2.2.2. Iaoae U = (Y( – aoaeue-yea iai?aa?oia, U1 (a?aeiia?aeii
Y1) – ?acoeueoao ciai?oiueiai i?e?aeiaiiy aei U iaeeieoe? (a?aeiia?aeii
Y1 = Y ( {1}). Oiae?

Hn (U, Y, A) ( Hn (U1, Y1, A).

A?aecia/eii, ui iaiaaeaiiy ia X a oai?ai? 2.2.1 ? ?noioiei. sse i?eeeaae
iaaaaeaii oaeee oe?eaaee oaeo:

I?iiiceoe?y 2.2.4. Iaoae G – ne?i/aiia a?oia. Oiae?

Hn (G,G \{1}, A) = 0

aeey aoaeue-yeiai G-iiaeoey A i?e n ( |G|.

Aeey ii??aiyiiy iaaaaea?ii, ui AI-eiaiiieia?? a?oie ne?i/aiiiai ii?yaeeo
caeeoathoueny iao?ea?aeueieie i?e aeia?eueiiio, ye caaaiaeii aaeeeiio,
n.

O oeueiio ae ?icae?e? aaiaeeoueny iiiyooy ii?iae?ciaaieo /anoeiaeo
eiaiiieia?e. A naia, /anoeiaee eieaioetha f SYMBOL 206 \f «Symbol» \s
14 I Cn( S, X, A) iaceaa?oueny ii?iae?ciaaiei, yeui f(x1,…, xn) = 0 ye
o?eueee xi = 1 aeey aeayeiai i SYMBOL 163 \f «Symbol» \s 14 F n.
?noioiei niiniaii aecia/athoueny a?oie ii?iae?ciaaieo X-eiaiiieia?e, ye?
aoaeaii iicia/aoe /a?ac NHn (S, X, A). Ianooiia noaa?aeaeaiiy ?
ocaaaeueiaiiyi aeia?a a?aeiiiai ?acoeueoaoo aeey eiaiiieia?e a?oi [5]:

Oai?aia 2.2.6. sseui i?aeiiiaeeia X SYMBOL 204 \f «Symbol» \s 14 I S
caaeiaieueiy? oiia? oai?aie 2.2.1, oi

aeey on?o n SYMBOL 179 \f «Symbol» \s 14 ? 0.

A?eueo iiaio ?ioi?iaoe?th i?i /anoeia? eiaiiieia?? iiaeia iaea?aeaoe ca
aeiiiiiaith eiino?oeoe?? eio?i?/ieo eiaiiieia?e, cai?iiiiiaaii? I.
Aa??ii ? Aeae. Aaeii [8, 9]. Iaiao?aei?noue o ?? aeei?enoaii?
iiynith?oueny oei, ui /anoeia? eiaiiieia?? iai?aa?oi, acaaae? aiai?y/e,
ia ? iio?aeiei ooieoi?ii, ? aei ieo ia iiaeia oaeeoe oaoi?eo Ea?oaia –
Aeeaiaa?aa. I?eoyaiaiiy ae oai??? Aa??a – Aaea aeicaiey? aecia/eoe
caaaeueiee i?aeo?ae aei aea/aiiy /anoeiaeo eiaiiieia?e.

Aeey oeueiai a ?icae?e? 2.3 aecia/a?oueny eaoaai??y PSem, ia’?eoaie
yei? ? ia?e (T, Y), aea Y – i?aeiiiaeeia a iai?aa?oi? T, a ii?o?ci

, aeey yeiai SYMBOL 97 \f «Symbol» \s 14 a (Y) i?noeoueny a Z.

), aea

= { SYMBOL 255 \f «Symbol» \s 14 y y1… SYMBOL 255 \f «Symbol» \s 14 y
yn | ( y1, …, yn ) SYMBOL 206 \f «Symbol» \s 14 I Yn }

Oey a?aeiia?aei?noue i?iaeiaaeo?oueny aei aiaeiooieoi?a G eaoaai???
PSem, ? i?ney aecia/aiiy i?aeoiaeei niiniaii i?e?iaeieo ia?aoai?aiue

SYMBOL 100 \f «Symbol» \s 14 d : G SYMBOL 174 \f «Symbol» \s 14 ® G 2
? SYMBOL 101 \f «Symbol» \s 14 e : G SYMBOL 174 \f «Symbol» \s 14
® IPSem

ie iaea?aeo?ii eio??eeo (G, SYMBOL 101 \f «Symbol» \s 14 e , SYMBOL
100 \f «Symbol» \s 14 d ).

) o eaoaai??? PSem SYMBOL 175 \f «Symbol» \s 14 ? S, caaaeyee /iio a
eaoaai??? PSem SYMBOL 175 \f «Symbol» \s 14 ? S aecia/a?oueny ooieoi?
eiaiiieia?e Hn(T, Y, A)G a?ae a?aoiaioa (T, Y). Oey eiino?oeoe?y ? aea?
ooeaia iienaiiy /anoeiaeo eiaiiieia?e o oa?i?iao oai??? Aa??a – Aaea:

Oai?aia 2.3.4. Hn(T, Y, A)G SYMBOL 64 \f «Symbol» \s 14 @ Hn+1(T, Y,
A) aeey aoaeue-yeeo n>0.

Io?eiai? ?acoeueoaoe aeicaieythoue iai aeei?enoiaoaaoe /anoeia?
eiaiiieia?? aeey ia/eneaiiy AI-eiaiiieia?e o oeo aeiaaeeao, eiee
aaea?oueny a?aeooeaoe a aeai?e iai?aa?oi? «aeia?ee» ei??iue. Oeae
ca’ycie anoaiiaeth?oueny a ?icae?eao 2.4 ? 2.5.

A ?icae?e? 2.4 aaiaeeoueny iiiyooy eaiiie/iiai ei?aiy oa
?icaeyaeathoueny eiai aeanoeaino?, iaiao?aei? aeey iiaeaeueoiai. Naia,
iaoae X – ei??iue iai?aa?oie S. Cia?aaeaiiy s = x1… xn aeaiaioa s
SYMBOL 206 \f «Symbol» \s 14 I S o aeaeyae? aeiaooeo aeaiaio?a x?
SYMBOL 206 \f «Symbol» \s 14 I X, oaeiai, ui xi xi+1 … xj SYMBOL 206
\f «Symbol» \s 14 I X aeey aoaeue-yeeo i, j, caaeiaieueiyth/eo
ia??aiinoyi 1 SYMBOL 163 \f «Symbol» \s 14 F i < j SYMBOL 163 \f "Symbol" \s 14 F n, iacaaii ?aaeoeiaaiei ?iceeaaeaiiyi. Ei??iue X iacaaii eaiiie/iei, yeui eiaeiee aeaiaio ?c S ia? ?ae?ia ?aaeoeiaaiaia ?iceeaaeaiiy. Iai?eeeaae, iiiaeeia an?o aeaiaio?a iai?aa?oie S yaey?oueny eaiiie/iei ei?aiai. Aacen naiaiaeii? iai?aa?oie F = (a1,(, an | (( oaeiae yaey?oueny, cae/aeii, eaiiie/iei ei?aiai. Iaio o?ea?aeueiee i?eeeaae eaiiie/iiai ei?aiy aea? i?aeiiiaeeia naiaiaeii? iai?aa?oie B = {b (i, j,() = ai aj( | i ( j ( (} ( F, yea ii?iaeaeo? F c aecia/ath/eie ni?aa?aeiioaiiyie b (i, j,() b (k, l,() = b (i, j,(, k, l,() i?e i ( j ( (. ( k ( l ( (. Aeey ia?aa??ee ei?aiy ia eaiiie/i?noue iai iio??aiee iaeei ?acoeueoao c [36]. Noiniaii aei iaoi? neooaoe?? oai?aia 1 oe??? noaoo? oi?ioeth?oueny oae: Eaia 2.4.1. Iaoae X – ei??iue iai?aa?oie S = (M ( R(, ui caaeiaieueiy? oiiaai: 1) M ( X; 2) eiaeia aecia/ath/a neiai c R i?noeoueny a X; 3) aeey aoaeue-yeeo ?eaiaio?a a, b, c ( S c oiai, ui ab, bc ( X aeieeaa? abc ( X. Oiae? X yaey?oueny eaiiie/iei. Ia?aoo?, iaeeaaeaii ua iaeio aeiaeaoeiao aeiiao ia X. Ei??iue X iacaaii J-ei?aiai, yeui aeey aoaeue-yeeo x, y, z SYMBOL 206 \f "Symbol" \s 14 I X ?c xy = x, yz = z aeieeaa? xz SYMBOL 206 \f "Symbol" \s 14 I X. Iai?eeeaae, a iai?aa?oi? ?c nei?i/aiiyi aac iaeeieoe? eiaeiee ei??iue yaey?oueny J-ei?aiai. Iane?aeie 2.4.4. Iaoae X – eaiiie/iee J-ei??iue iai?aa?oie S. sseui x1,(, xn ( X ? xixi+1 ( X aeey on?o 1 ( i ( n-1, oi (x1,(, xn) ( Xn. Ianooiia noaa?aeaeaiiy yaey?oueny iniiaiei ?acoeueoaoii ae?oai? aeaae: yaey?oueny ?ciii?o?ciii aeey on?o n SYMBOL 179 \f "Symbol" \s 14 ? 0. Iniiao aeiaaaeaiiy oe??? oai?aie neeaaea? iiaoaeiaa noyaoth/i? aiiioii??, i?ae?a?aii? iaeaaeiei /eiii. sse ?ethno?aoe?th canoinoaaiiy io?eiaieo ?acoeueoao?a i?i /anoeia? eiaiiieia?? o ?icae?e? 2.6 ia/eneaii AI-eiaiiieia?? aeayeeo oei?a iai?aa?oi. Iaoae S = (a, b1, b2 , … | aP= Q ( – oaea iai?aa?oia, ui aecia/aeuei? neiaa P ? Q ia i?noyoue e?oa?e a, ? Si? iicia/a? iai?aa?oio, aioe?ciii?oio iai?aa?oi? S. Oai?aia 2.6.2. Hn(S, A) = 0 aeey aoaeue-yeiai S-iiaeoey A ? aeey aeia?eueieo n SYMBOL 179 \f "Symbol" \s 14 ? 2. Oai?aia 2.6.2 aea? na??th eiio?i?eeeaae?a aei a?iioace I?o/aeea (aeea. ieae/a). Eiaiiieia?? aioe?ciii?oii? iai?aa?oie Si? = < a, b1, b2 , … | Pa = Q >

iiaoaeiaai? neeaaei?oa. Aeey ?oiueiai iienaiiy iai aoaea c?o/ii aaanoe
aecia/aiiy aiaeiaa iio?aeii? Oiena [4] aeey iai?aa?oi.

Iaoae F = (b1, b2, (( (( — aeia?eueia naiaiaeia iai?aa?oia. Iaoae
aeaiaio x ( F caienaii o aeaeyae?

x = x1 bi x2 bi ( xn-1 bi xn,

aea neiaa xk ( F ia i?noyoue aoeae bi. Iio?aeiith neiaa x ii bi iacaaii
aeaiaio iai?aa?oiiai? aeaaa?e ZF1:

oi

Oai?aia 2.6.6. Aeey aoaeue-yeiai Si?-iiaeoey A

a) H2 (Si?, A) SYMBOL 64 \f «Symbol» \s 14 @ A /B, aea

a) Hn (Si?, A) = 0 aeey on?o n SYMBOL 179 \f «Symbol» \s 14 ? 3.

?icaeyiaii oaia? ?ioee i?eeeaae.

Iaoae iai?aa?oia T ii?iaeaeo?oueny nai?th i?aeiai?aa?oiith U ? aeaiaioii
p SYMBOL 207 \f «Symbol» \s 14 I U oaeei /eiii, ui

T = (U, p | Up = p( (p
SYMBOL 207 \f «Symbol» \s 14 I U),

? Top – iai?aa?oia, aioeiciii?oia aei T.

Oai?aia 2.6.7. Aeey aoaeue-yeiai T-iiaeoey A

a) H1 (T, A) SYMBOL 64 \f «Symbol» \s 14 @ A /( p – 1)A,

a) Hn (T, A) = 0 aeey on?o n SYMBOL 179 \f «Symbol» \s 14 ? 2.

Oai?aia 2.6.8. Iaoae A – aeia?eueiee Top-iiaeoeue, A1 – aaeeoeaia a?oia
iiaeoey A, ui ?icaeyaea?oueny ye Top-iiaeoeue ?c o?ea?aeueiei
iiiaeaiiyi. Aiiiii?o?cie

SYMBOL 121 \f «Symbol» \s 14 y n: Hn (Top, A) SYMBOL 174 \f «Symbol»
\s 14 ® Hn (U, A),

ui ?iaeoeiaai? aeeaaeaiiyi U SYMBOL 174 \f «Symbol» \s 14 ® Top,
aeeth/athoueny aei aeiaai? oi/ii? iine?aeiaiino?

Oai?aie 2.6.7 ? 2.6.8 aeathoue iiaeeea?noue iiaoaeoaaoe i?eeeaae
iai?aa?oie, ui ia? a eaoaai??? e?aeo iiaeoe?a eiaiiieia?/io aei??i?noue,
aei??aithth/o 1, a a eaoaai??? i?aaeo iiaeoe?a – eiaiiieia?/io
aei??i?noue, aei??aithth/o iane?i/aiiino?. A naia, a iiia?aaei?o
oai?aiao a?cueiaii aaeeoeaio a?oio e?eueoey Z9 ye A, a ioeueoeie?eaoeaio
a?oio eiai ia?aoeieo aeaiaio?a – ye U. Ae?y U ia A ni?aiaaea? ?c
iiiaeaiiyi a e?eueoe? Z9. Oiae? H n (T, A) = 0 ? Hn (Top, A) ( Z3 i?e n
SYMBOL 179 \f «Symbol» \s 14 ? 2.

Aeaao 3 i?enay/aii aeine?aeaeaiith eiaiiieia?/ii? aei??iinoe iai?aa?oi
(ia?aaaaeii ?c nei?i/aiiyi). Eiaiiieia?/ia aei??i?noue iai?aa?oie S
iicia/a?oueny /a?ac cd S ? ?icoi??oueny a iaoiio eiioaeno? ye
i?i?iaeueia oe?ea iaa?ae’?iia /enei n, oaea ui Hn+1 (S, A) = 0 aeey
aoaeue-yeiai S-iiaeoey A.

O ?icae?e? 3.1 aea/athoueny aiiieia?/i? aeanoeaino? i?aeiai?aa?oi
aaeeoeaii? iai?aa?oie Nr iaa?ae’?iieo oe?ei/enaeueieo aaeoi??a..
I?aeiai?aa?oia S SYMBOL 204 \f «Symbol» \s 14 I Nr iaceaa?oueny
ia’?iiith, yeui aiia ia i?noeoueny o aeaniiio i?aei?inoi?? i?inoi?o Rr,
? ?yniith, yeui ciaeaeaoueny oaeee aaeoi? f , ui f + e(?) SYMBOL
206 \f «Symbol» \s 14 I S aeey on?o i?o?a e(?).

I?iiiceoe?y 3.1.4. Eiaeia ia’?iia iai?aa?oia S SYMBOL 204 \f «Symbol»
\s 14 I Nr ?ciii?oia ?yni?e.

Iicia/eii /a?ac [Con S] noeoii?noue oe?ei/enaeueieo oi/ie, ui i?noyoueny
a iioeeiio caieiaiiio eiion?, iaoyaiooiio ia S (o ae?eniiio i?inoi??
Rr).

Oai?aia 3.1.6. Eiaeia ne?i/aiii ii?iaeaeaia ?ynia i?aeiai?aa?oia S
SYMBOL 204 \f «Symbol» \s 14 I Nr i?noeoue ?aeaae aeaeo I = v + [Con S]
aeey aeayeiai aeaiaioa v SYMBOL 206 \f «Symbol» \s 14 I S.

Oea noaa?aeaeaiiy ocaaaeueith? a?aeiio aeanoea?noue i?aeiai?aa?oi ?c N,
a?aeiia?aeii aei yeiai eiaeia oaea i?aeiai?aa?oia ?ciii?oia
i?aeiai?aa?oi?, yea i?noeoue i?ii?iue [n, SYMBOL 165 \f «Symbol» \s 14
Y ) aeey aeayeiai iaoo?aeueiiai n.

, aea (p1,(, pr) ( S. Aeey nei?i/aiiy aaaaeaii iicia/aiiy

,

aea p = (p1,(, pr).

Ca?aeii c i?iiiceoe??th 3.1.4 ie iiaeaii iaiaaeeoeny aeiaaeeii, eiee S –
?ynia iai?aa?oia. Cao?ene?o?ii aeaiaio f ( S, aeey yeiai f + e(i) ( S
i?e on?o i ( r.

Iaaaaea?ii, ui ooiaeaiaioaeueiei ?aeaaeii IP iai?aa?oiiaiai e?eueoey ZS
caaoueny yae?i aiiiii?o?cio

Oaeei /eiii, ?aeaae IP ye iiaeoeue iaae ZS ii?iaeaeoaoueny on?ia

eeaiaioaie aeaeyaeo s — 1 (s ( P).

Oai?aia 3.1.7. Ooiaeaiaioaeueiee ?aeaae ISM iai?aa?oiiaiai e?eueoey ZSM
ii?iaeaeo?oueny ye ZSM-iiaeoeue iiiai/eaiaie

Iane?aeie 3.1.8. Ooiaeaiaioaeueiee ?aeaae aeia?eueii? iai?aa?oie S ( Nr
yaey?oueny ne?i/aiii ii?iaeaeaiei.

I?aee?aneeii, ui iane?aeie 3.1.8 caeeoa?oueny ni?aaaaeeeaei ? aeey
iane?i/aiii ii?iaeaeaieo i?aeiai?aa?oi.

A?eueo aeaoaeueiee ?icaeyae iaeiiaei??iiai aeiaaeeo aeicaiey? aeaoe
iiaia iienaiiy eiiooaoeaieo iai?aa?oi eiaiiieia?/iie aei??iino? 1 ?c
nei?i/aiiyi:

Oai?aia 3.1.9. Aeey eiiooaoeaiie iai?aa?oie S ?c nei?i/aiiyi

cd S = 1 oiae? ? o?eueee oiae?, eiee S ? ?ciii?oiith aai aei a?oie Z,
aai aei i?aeiai?aa?oie iai?aa?oie N.

?icae?e 3.2 ? aeiiii?aeiei (aeey ?icae?eo 3.3), oi/a ? i?aaenoaaey?
naiino?eiee ?ioa?an.

Ii-ia?oa, ooo aeaii iaeei e?eoa??e aeey eiaiiieia?/ii? aei??iino?
iiaeoey:

Eaia 3.2.1. Iaoae R – aoaeue-yea e?eueoea, A – e?aee iiaeoeue iaae R, (n
– eia?aie/iee iia?aoi? i?i?eoeaii? ?acieueaaioe iiaeoey A. Oiae? (n
iiaeia ?icaeyaeaoe ye eioeeee, ui iaeaaeeoue aei Zn+1(A, Im(n). Eioeeee
(n yaey?oueny eiaiiieia?/iei ioeth oiae? ? o?eueee oiae?, eiee
i?iaeoeaia aei??i?noue iiaeoey A ia ia?aaeuo? n.

Ii-ae?oaa, a oeueiio ?icae?e? aeine?aeaeaii aeanoeaino? iaeiiai oeio
nenoai ??aiyiue o iai?aa?oiao.

Iaoae S iicia/a? iai?aa?oio ic nei?i/aiiyi eiaiiieia?/ii? aei??iinoe 1.
Iacaaii nenoaio ??aiinoae o iai?aa?oi? S

oeeee?/iith (ooo n >1). Oeeee?/ia nenoaia caaoueny ?aceiaeeiith, yeui
ai SYMBOL 206 \f «Symbol» \s 14 I aj S aeey aeayeeo i SYMBOL 185 \f
«Symbol» \s 14 ? j, ? i?eaiaeeiith, yeui ai S SYMBOL 199 \f «Symbol»
\s 14 C aj S SYMBOL 185 \f «Symbol» \s 14 ? SYMBOL 198 \f «Symbol»
\s 14 AE aeey aeayeeo i, j, oaeeo, ui i SYMBOL 185 \f «Symbol» \s
14 ? j, i SYMBOL 185 \f «Symbol» \s 14 ? j SYMBOL 177 \f «Symbol»
\s 14 ± 1 (mod n). Oeeee?/io nenoaio i?e n SYMBOL 163 \f «Symbol» \s
14 F 3 ie aaaaea?ii iai?eaiaeeiith.

Oai?aia 3.2.4. Oeeee?/ia nenoaia (1) i?eaiaeeia i?e n > 3.

Oai?aia 3.2.5. sseui n = 3, oi aeey nenoaie (1) ciaeaeooueny oae?
aeaiaioe zi SYMBOL 206 \f «Symbol» \s 14 I S (1 SYMBOL 163 \f
«Symbol» \s 14 F i SYMBOL 163 \f «Symbol» \s 14 F 3), ui a1 z1 = a2
z2 = a3 z3.

Oe? oai?aie aeiioneathoue oiiieia?/io ?ioai?aoaoe?th. ?icaeyiaii
neiie?oe?aeueiee eiiieaen, aa?oeiaie yeiai yaeythoueny aeaiaioe
iai?aa?oie S, a n-i??ieie a?aiyie – iaai?e (a1 , …, an+1 ), ai
SYMBOL 206 \f «Symbol» \s 14 I S, aeey yeeo

Oiae? eiaeiee caieiooee oeyo o oeueiio eiiieaen? noyao?oueny. Cie?aia

yeui S ? iiii?aeii, oi oaeee eiiieaen aoaea e?i?eii ca’yciei ? eiai
ooiaeaiaioaeueia a?oia o?ea?aeueia.

Ca aiaeia??th c a?iioacith Aai? – Aeeaiaa?aa aeey a?oi (iiceoeaia
ae??oaiiy yei? i?ci?oa iaea?aeaei iacao oai?aie Noiee?iana – Noiia [1])
A. I?o/aee [18] i?eionoea, ui iai?aa?oia c? nei?i/aiiyi eiaiiieia?/ii?
aei??iino? 1 iiaeiia aooe oae caaiith /anoeiai naiaiaeiith (oiaoi
naiaiaeiei aeiaooeii naiaiaeii? a?oie ? naiaiaeii? iai?aa?oie).

O noaooyo [24] ? [26] aeena?oaioii iiaoaeiaaii eiio?i?eeeaaee aei
a?iioace I?o/aeea. E??i oiai, o [26] noi?ioeueiaaii iiaa i?eiouaiiy
(iineaaeaia a?iioaca I?o/aeea): yeui iai?aa?oia c? nei?i/aiiyi ia?
eiaiiieia?/io aei??i?noue, aei??aithth/o 1, oi aiia aeeaaea?oueny a
a?oio (i?e/iio inoaiiy aaoiiaoe/ii yaey?oueny naiaiaeiith ca?aeii c
oai?aiith Noiee?iana – Noiia).

O ?icae?e? 3.3 aeaii iiceoeaia ae??oaiiy ineaaeaii? a?iioace I?o/aeea:

Oai?aia 3.3.3. Iai?aa?oia c? nei?i/aiiyi eiaiiieia?/iie aei??iino? 1
aeeaaea?oueny aei naiaiaeii? a?oie.

Aeiaaaeaiiy oai?aie 3.3.3 caniiao?oueny ia ?acoeueoaoao iiia?aaeiueiai
?icae?eo, a oaeiae ia iaei?e aeinoaoi?e oiia? aeeaaeaiiy iai?aa?oie aei
a?oie,

yeo iaea?aeaa I. Aoei.

A?aecia/eii, ui c ?acoeueoao?a ?icae?eo 2.6 aeieeaa?, ui cai?ioia
noaa?aeaeaiiy iaa??ia.

Iniiai? ?acoeueoaoe oe??? aeaae iioae?eiaaii a [28, 29, 34, 35, 37].

?ioee i?aeo?ae aei aeine?aeaeaiiy iai?aa?oi eiaiiieia?/ii? aei??iinoe 1
(ia iaia’yceiai ?c nei?i/aiiyi) cae?enith?oueny a aeaa? 4. A?i
caniiaaiee ia aeei?enoaii? iiiyooy ?aoeaeoeaii? i?aeeaoaai??? ?
?icaeyaea?oueny a ?icae?e? 4.1. sseui D – ?aoeaeoeaia i?aeeaoaai?ey
eaoaai??? iai?aa?oi Sem (iai?eeeaae, i?aeeaoaai?ey a?oi, iai?ano?oeoo?
a?oi, oe?eeii i?inoeo, ?iaa?nieo aai ee?ooi?aeiaeo iai?aa?oi), oi
?aoeaeoi?iee ii?o?ci ?iaeoeo? aiiiii?o?ci a?oi eiaiiieia?e

SYMBOL 101 \f «Symbol» \s 14 e n : Hn (R (S) , A) SYMBOL 174 \f
«Symbol» \s 14 ® Hn (S, A),

aea R(S) – ?aoeaeoi? iai?aa?oie S a eaoaai??? D.

C aeei?enoaiiyi aeia?a a?aeiieo ca’yce?a i?ae iaeiiaei??ieie
eiaiiieia?yie ? iai?ai?yieie aeiaooeaie iaea?aeaii oae? ?acoeueoaoe
(ieae/a /a?ac A SYMBOL 208 \f «Symbol» \s 14 ? R (S) iicia/aii
iai?ai?yiee aeiaooie):

Oai?aia 4.1.1. Iaoae S – aeia?eueia iai?aa?oia, A – iiaeoeue iaae R (S).
sseui A SYMBOL 208 \f «Symbol» \s 14 ? R (S) SYMBOL 206 \f «Symbol»
\s 14 I D, oi SYMBOL 101 \f «Symbol» \s 14 e 1 yaey?oueny
?ciii?o?ciii.

Iane?aeie 4.1.2 Iaoae D – ?aoeaeoeaia i?aeeaoaai??y eaoaai??? Sem, S
SYMBOL 206 \f «Symbol» \s 14 I Sem, R(S) – D-?aoeaeoi? iai?aa?oie S.

1) sseui A SYMBOL 208 \f «Symbol» \s 14 ? R(S) SYMBOL 206 \f «Symbol»
\s 14 I D aeey aoaeue-yeiai R(S)-iiaeoey A, oi SYMBOL 101 \f «Symbol»
\s 14 e 2 yaey?oueny iiiiii?o?ciii.

2) sseui R(S) ? iiii?aeii ? A SYMBOL 208 \f «Symbol» \s 14 ? R(S)
SYMBOL 206 \f «Symbol» \s 14 I D aeey aoaeue-yeiai oi?oa?iiai
R(S)-iiaeoey A, oi SYMBOL 101 \f «Symbol» \s 14 e 2 yaey?oueny
iiiiii?o?ciii.

Cie?aia , oea aoaea oae, yeui D yaey?oueny eaoaai???th a?oi, oe?eeii
i?inoeo iai?aa?oi aai ee?ooi?aeiaeo iai?aa?oi (i?iiiceoe?y 4.1.3).
Ca?aene aeieeaa?, ui aeanoea?noue «iaoe eiaiiieia?/io aei??i?noue 1»
niaaeeo?oueny ?aoeaeoi?aie oeacaieo oei?a.

Aeei?enoaiiy oaeiai i?aeoiaeo iieacaia ia i?eeeaae? iienaiiy oe?eeii
i?inoeo iai?aa?oi eiaiiieia?/ii? aei??iinoe 1.

Iaoae T = M(G; I, (; P) – oe?eeii i?inoa iai?aa?oia c
naiaea?/-iao?eoeath P = (p(i), N – ii?iaeueiee ae?eueiee a G,
ii?iaeaeaiee aeaiaioaie p(i (( ( (, i ( I), i?e/iio c oi/i?noth aei
?ciii?o?cio ie iiaeaii aaaaeaoe, ui p1i = p(1 = e.

Eaia 4.14. G/N yaey?oueny a?oiiaei ?aoeaeoi?ii iai?aa?oie T.

Oai?aia 4.1.5. sseui oe?eeii i?inoa iai?aa?oia T = M(G; I, (; P)

ia? eiaiiieia?/io aei??i?noue 1, oi:

1) oaeoi?a?oia G/N naiaiaeia;

2) a?oia G naiaiaeia;

3) iiiaeeia {p(i | ( ( 1, i ( 1}, yeui aiia ia ? ionoith, yaey?oueny
aacenii a ii?iaeaeai?e ?th (naiaiaei?e) i?aea?oi? a?oie G.

Iane?aeie 4.1.6. sseui iai?aa?oia ia? eiaiiieia?/io aei??i?noue 1, oi ??
oe?eeii i?inoee ?aoeaeoi? caaeiaieueiy? oiiaai 1)-3) oai?aie 4.1.5.

O ca’yceo c iiaeeeaeie canoinoaaiiyie aei oai??? eiaiiieia?e c’yaeeanue
iaiao?aei?noue a?eueo aeaoaeueii aea/eoe aeanoeaino? a?oiiaeo
?aoeaeoi??a iai?aa?oi. I?e oeueiio aeieea? aeayeee eean /anoeiaeo
a?oii?aeia (iacaaieo o aeena?oaoe?ei?e ?iaio? Z-ia?oi?aeaie), ui o?nii
iia’ycai? c a?aoii ae?eeiino? iai?aa?oie. Aeanoeaino? Z-ia?oi?ae?a
aeine?aeaeothoueny a ?icae?e? 4.2. Ca ?oiueith aeiiiiiaith o ?icae?e?
4.3 (oai?aia 4.3.8) ocaaaeueith?oueny iaoiae iiaoaeiae a?oiiaiai
?aoeaeoi?a aeey iai?aa?oie ?c nei?i/aiiyi, yeee cai?iiiiiaaii
Ke?ooi?aeii ? I?anoiiii [3].

*anoeiaee a?oii?ae, ui c’yaey?oueny i?e oeueiio, ia? oaeee aeae.
I?eionoeii aac oo?aoe caaaeueiino?, ui S i?noeoue iaeeieoeth. ?icaeyiaii
i???ioiaaiee a?ao c aeaiaioaie ?c S ye aa?oeiai?; a ? b niieo/ai?
?aa?ii (?c ii/aoeiaith aa?oeiith a), yeui b = ax aeey aeayeiai x
SYMBOL 206 \f «Symbol» \s 14 I S (a?ao ae?eeiino? iai?aa?oie). Ie
aoaeaii iicia/aoe oaea ?aa?i /a?ac [a, x]. Aecia/ath/e ia iiiaeei?
?aaa? P(S) /anoeiao iia?aoe?th

[a, x] [ax, y] = [a, xy],

ie ia?aoai?th?ii P(S) o /anoeiaee a?oii?ae.

E??i oiai, aeyaey?oueny c?o/iei aaanoe aeiaeaoeiaee ia’?eo K, iacaaiee
eiiieaenii Eaee iiii?aea S, – oea neiie?oe?aeueiee eiiieaen, caaeaiee ia
iiiaeei? S, aeey yeiai neiieaenaie ? an?eye? iaai?e (a0, …, an) iiia?ii
??cieo aeaiaio?a ?c S, oaeeo, ui ai+1 SYMBOL 206 \f «Symbol» \s 14 I
ai S aeey on?o i < n. Eiiieaen Eaee aecia/a?oueny a?aoii ae?eeiino? (aai, ui oa ae naia, a?oii?aeii) P(S), ?icaeyiooei o iiia?aaeiueiio ?icae?e?; a naia, n-neiieaene aca?iii iaeiicia/ii a?aeiia?aeathoue i???ioiaaiei iooyi aeiaaeeie n o a?ao? P(S). O ?icae?e? 4.4 aea/athoueny ca'ycee i?ae eiaiiieia?yie iai?aa?oie S oa ?? eiiieaeno Eaee K. O i?eiouaii?, ui S ? iiii?aeii ?c nei?i/aiiyi, yeee ia ia? ia?aoeieo iaiaeeie/ieo aeaiaio?a, io?eiaii oae? ?acoeueoaoe: Oai?aia 4.4.3. sseui A – S-iiaeoeue ?c ioeueiaei iiiaeaiiyi, oi Hn (S, A) SYMBOL 64 \f "Symbol" \s 14 @ Hn-1 (K, A) aeey on?o n SYMBOL 179 \f "Symbol" \s 14 ? 2. Iane?aeie 4.4.4. sseui cd S ( n, oi Hm(K, A) = 0 aeey on?o m ( n ? aoaeue-yei? aaaeaai? a?oie A. Iiaeia io?eiaoe oaeiae aeayeo ?ioi?iaoe?th i?i aiiieia?? eiiieaeno Eaee, yea aea? a?eueo i?ici?ee ca'ycie i?ae eiai oiiieia?/iith no?oeoo?ith ? eiaiiieia?yie iiii?aea S: Iane?aeie 4.4.5. sseui cd S SYMBOL 163 \f "Symbol" \s 14 F n, oi Hm(K) = 0 aeey aoaeue-yeiai m SYMBOL 179 \f "Symbol" \s 14 ? n. Iniiai? ?acoeueoaoe oe??? aeaae iioae?eiaaii a [30, 38]. Aeaao 5 i?enay/aii aeeeaaeaiith caaaeueii? oai??? eiaiiieia?e iai?aa?oi. O i?e i?iaiaeeoueny aiae?c ??ciiiai?oieo oai??e iai?aa?oiiaeo eiaiiieia?e ? aeacothoueny ca'ycee i?ae ieie. Ii?yae c ?nioth/eie canoinoaaaiiyie eiaiiieia?e iniaeeao oaaao a oe?? aeaa? i?eae?eaii eeaneo?eaoe?? oei?a eiaiiieia?e iai?aa?oi. O oe?? aeaa? ?icaeyaeathoueny o?e iniiaieo (c oi/ee ci?o aeena?oaioa) iai?yiee: – AI-eiaiiieia?? (o oiio aeaeyae?, a yeiio ?o aecia/aii a "Aiiieia?/i?e aeaaa??" A. Ea?oaiii ? N. Aeeaiaa?aii); – ??ciiiai?oi? oeie eiaiiieia?e, ui aeieeathoue i?e iienaii? iioe?aiue iai?aa?oi; – ie?ai? aeiaaeee /anoeiaeo eiaiiieia?e, ui c’yaeeeny i?e ae??oaii? aeayeeo aeaaa?a?/ieo caaea/. AENIIAEE A aeena?oaoe?ei?e ?iaio? aeine?aeaeoaaeeny aeanoeaino? eiaiiieia?e iai?aa?oi. An? oe? aeine?aeaeaiiy i?iaaaeaii aia?oa. Cai?iiiiiaaii i?eeeaaeaiiy aaaaeaieo ?ai?oa aeena?oaioii eiino?oeoe?? 0-eiaiiieia?e aei aea/aiiy aeanoeainoae iiii?aeo A?aoa?a oa neeueii i?eia?ieo ne?i/aiii aei??ieo aeaaa?. ?ic?iaeaii oai??th /anoeiaeo eiaiiieia?e ? aeaii canoinoaaiiy ?o aei ia/eneaiiy iai?aa?oiiaeo eiaiiieia?e Aeeaiaa?aa – Iaeeaeia. Iaea?aeaii ??oaiiy iineaaeaii? i?iaeaie I?o/aeea i?i iai?aa?oie ?c nei?i/aiiyi eiaiiieia?/ii? aei??iino? 1. Aea/aii ca'ycee i?ae eiaiiieia?yie iai?aa?oi ? iaaieo eean?a ?oi?o ?aoeaeoi??a. Cai?iiiiiaaii iiiyooy eiiieaeno Eae? aeey iai?aa?oie oa aeine?aeaeaii eiai oiiieia?/i? oa?aeoa?enoeee. ?acoeueoaoe aeena?oaoe?? iiaeooue aooe aeei?enoiaaieie aeey iiaeaeueoeo aeine?aeaeaiue eiaiiieia?e ye iai?aa?oi, oae ? ?ioeo aeaaa?a?/ieo nenoai. NIENIE E?OA?AOO?E 1. A?aoi E.N. Eiaiiieiaee a?oii. – I.: Iaoea, 1987. – 384 c. 2. Ea?oai A., Yeeaiaa?a N. Aiiieiae/aneay aeaaa?a. – I.: EE, 1960. – 510 c. 3. Keeooi?ae A., I?anoii A. Aeaaa?ae/aneay oai?ey iieoa?oii. – I.: Ie?, 1972. – 422 n. 4. K?ioyee ?., Oien ?. Aaaaeaiea a oai?eth oceia. – I.: Ie?, 1967. – 348 n. 5. Iaeeaei N. Aiiieiaey. – I.: Ie?, 1966. – 543 n. 6. Iiaeeia A.A. I 0-eiaiiieiaeyo iieoa?oii // Na.: Oai?. e i?eee. aii?.aeeoo. o?-iee e aeaaa?a. E., Iaoeiaa aeoiea. – 1978. – N.185-188. 7. Iiaeeia A.A. I i?iaeoeaiuo i?aaenoaaeaieyo iieoa?oii // Aeiee. AI ONN?, na?.A. – 1979. – N6. – N.474-478. 8. Barr M., Beck J. Acyclic models and triples // In: Proc. Conf. Cat. Algebra (La Jolla, 1965), Springer. – 1966. – P.336-343. 9. Barr M., Beck J. Homology and standard construction // Lect. Notes in Math. – 1969. – V. 80. – P.245-335. Cheng Charles Ching-an, Shapiro J. Cohomological dimension of an abelian monoid // Proc. Amer. Math. Soc. – 1980. – V. 80. – N4. – P.547-551. 11. Clark W.E. Cohomology of semigroups via topo\-lo\-gy with an application to semigroup algebras // Commun. Algebra. – 1976. – V. 4. – P.979-997. 12. Haile D.E. On crossed product algebras arising from weak cocycles // J. Algebra. – 1982. – V. 74. – P.270-279. 13. Haile D.E. The Brauer monoid of a field // J.Algebra. – 1983. – V. 81. – N2. – P.521-539. 14. Haile D.E., Larson R.G., Sweedler M.E. A new invariant for C over R: almost invertible cohomology theory and the classification of idempotent cohomology classes and algebras by partially ordered sets with Galois group action // Amer. J. Math. – 1983. – V. 105. – N3. – P.689-814. 15. Lausch H. Cohomology of inverse semigroups // J. Algebra. – 1975. – V. -35. – N1-3. – P.273-303. 16. Leech J.E. Cohomology theory for monoid congruences // Houston J. Math. – 1985. – V. 11. – N2. – P.207-223. 17. Loganathan M. Cohomology and extensions of regular semigroups // J. Austral. Math. Soc., ser. A. – 1983. – V. 35. – N2. – P.178-193. 18. Mitchell B. On the dimension of objects and categories. I. Monoids // J.Algebra. – 1968. – V. 9. – N~3. – P.314-340. 19. Nico W.R. On the cohomology of finite semigroups // J. Algebra. – 1969. – V. 11. – N4. – P.598-612. 20. Nico W.R. Homological dimension in semigroup algebras // J. Algebra. – 1971. – V. 18. – N3. – P.404-413. 21. Sweedler M.E. Weak cohomology // Contemp. Math. – 1982. – V. 13. – P.109-119. ?IAIOE AAOI?A CA OAIITH AeENA?OAOe?? NOAOO?: 22. Iiaeeia A.A. 0-eiaiiieiaee aiieia 0-i?inouo iieoa?oii // Aanoiee Oa?uee. ain. oi-oa. – aui. 46. – 1981. – N221. – N.80-85. 23. Iiaeeia A.A. I au/eneaiee eiaiiieiaee iaeioi?uo iieoa?oii // Aanoiee Oa?uee. ain. oi-oa. – aui. 46. – 1981. – N221. – N.96. 24.Iiaeeia A.A. Eiio?i?eia? e iaeiie aeiioaca Ieo/aeea // O?. Oaee. iao. ei-oa AI ANN?. – 1982. – O. 70. – N.52-55. 25. Iiaeeia A.A. Ii?aaeaeythuea niioiioaiey e 0-iiaeoee iaae iieoa?oiiie // Na.: Oai?ey iieoa?oii e aa i?eeiae. Iieeaaee/. iieoa?oiiu. Iieoa?oiiu i?aia?aciaaiee. Ecae-ai Na?aoia. oi-oa . – 1983. – N.94-99. 26. Novikov B.V. On partial cohomologies of semigroups // Semigroup Forum. – 1984. – V. 28. – N1-3. – P.355-364. 27. Iiaeeia A.A. *anoe/iua eiaiiieiaee iieoa?oii e eo i?eeiaeaiey // Eca. aocia. Iaoai. – 1988. – N11. – N.25-32. 28. Iiaeeia A.A. Eiiiooaoeaiua iieoa?oiiu n nie?auaieai ?acia?iinoe 1 // Iaoai. caiaoee. – 1990. – N. 48. – N1. – N.148-149. 29. Iiaeeia A.A. I no?iaiee iiaeiiiaeanoa aaeoi?iie ?aoaoee, caieioouo ioiineoaeueii neiaeaiey // Oe?. aaii. na. – 1992. – N35. – N.99-103. 30. Iiaeeia A.A. ?aoeaeoeaiua iiaeeaoaai?ee e eiaiiieiaee iieoa?oii // Aeiiiaiaei AI Oe?a?ie. – 1994. – N8. – N.10-12. 31. Novikov B.V. On the structure of subsets of a vector lattice that are closed with respect to addition // J. Math. Sci. – 1994. – V.72. – N 4. – P.3223-3225. 32. Novikov B.V. On modification of the Galois group // Filomat (Yugosl.). – 1995. – V. 9. – N3. – P.867-872. 33. Iiaeeia A.A. I iiiieaea A?aoy?a // Iaoai. caiaoee. – 1995. – O. 57. – N 4. – N.633-636. 34. Iiaeeoa A.A. I iieoa?oiiao eiaiiieiae/aneie ?acia?iinoe 1 // Aeiiia?ae? IAI Oe?a?ie. – 1996. – N 8. – N.6-8. 35. Iiaeeoa A.A. Ia ineaaeaiiie aeiioaca Ieo/aeea // Aeiiia?ae? IAI Oe?a?ie. – 1998. – N 3. – N.26-27. 36. Kashcheeva O.S., Novikov B.V. Canonic subsets in semigroups // Filomat (Yugosl.). – 1998. – V. 12. – N1. – P.21-27. 37. Novikov B.V. Semigroups of cohomological dimension 1 // J. Algebra. – 1998. – V. 204. – N.2. – P.386-393. 38. Novikov B.V. Quotients of cancellative semigroups // Aii?inu aeaaa?u (Aiiaeue, Aaea?onue). – 1998. – O. 13. – N.22-28. 39. Novikov B.V. Partial cohomologies and canonic roots in semigroups // Iaoaiaoe/i? nooae??. – 1999. – V. 12 . – N1. – C. 7–14. 40. Novikov B.V., Iordjev K. On a generalization of ideals in infinite semigroups // C.R.Acad.Bulgare Sci. – 1996. – V. 49. – N4. – P.5-8. OACE AeIIIA?AeAE: 41. Iiaeeia A.A. I /anoe/iuo eiaiiieiaeyo iieoa?oii // Na.: XVI Anan. aea. eiioa?aioeey. Oacenu. – *.2, E. – 1981. – N.97-98. 42. Iiaeeia A.A. I eio?ia/iie oai?ee /anoe/iuo eiaiiieiaee iieoa?oii // Na.: XVII Anan. aea. eiioa?aioeey. Oacenu niiau., Ii. – 1983. – N.175. Hiaeeia A.A. I eiaiiieiae/aneie ?acia?iinoe iaeioi?uo iieoa?oii // Na.: XVIII Anan. aea. eiioa?aioeey. Oacenu niiau. – *.2, Eeo. – 1985. – N.66. 44. Iiaeeia A.A. I iiiieaea A?aoy?a // Na.: XIX Anan. aea. eiioa?aioeey. Oacenu niiau. – *.2, Eueaia. – 1987. – N.203. 45. Novikov B.V. On semigroups of cohomological dimension one // In: Colloquium on Semigr. Szeged (Hung.). – 1994. – P.27. 46. Novikov B.V. On modification of the Galois group // In: Algebra, Logic & Discr. Math., Nish (Yugosl.). – 1995. – P.86-87. 47. Novikov B.V. The Ore complex and the semigroup dimension // Representation Theory and Computer Algebra. Kyiv, March 18 – 23. Kyiv Univ. – 1997. – P.32-33. Iia?eia A.A. Eiaiiieia?? iai?aa?oi.- ?oeiien. Aeena?oaoe?y ia caeiaoooy iaoeiaiai nooiaiy aeieoi?a o?ceei-iaoaiaoe/ieo iaoe ca niaoe?aeuei?noth 01.01.06 – aeaaa?a ? oai??y /enae.- Ee?anueeee oi?aa?neoao ?i. O. Oaa/aiea, Ee?a, 1999. Aeena?oaoe?th i?enay/aii aeine?aeaeaiith eiaiiieia?e iai?aa?oi oa ?o canoinoaaiiyi. Aea/aii aeanoeaino? iai?aa?oi eiaiiieia?/ii? aei??iino? 1, cie?aia, aeiaaaeaii iineaaeaio a?iioaco I?o/aeea. Cai?iiiiiaaii iiao eiino?oeoe?th /anoeiaeo eiaiiieia?e iai?aa?oi, iaea?aeaii ?oi? eio?i?/ia cia?aaeaiiy ? ca'ycie ?c eiaiiieia?yie Aeeaiaa?aa – Iaeeaeia. C ?oiueith aeiiiiiaith ciaeaeaii a?oie eiaiiieia?e Aeeaiaa?aa – Iaeeaeia aeayeeo eean?a iai?aa?oi ?, cie?aia, aeaii ?yae eiio?i?eeeaae?a aei a?iioace I?o/aeea. Iaaaaeaii aeei?enoaiiy /anoeiaeo eiaiiieia?e aeey eeaneo?eaoe?? neeueii i?eia?ieo anioe?aoeaieo aeaaa?, io?eiaii iia? aeanoeaino? iiii?aea A?aoa?a. Eeth/ia? neiaa: iai?aa?oie, a?oie eiaiiieia?e iai?aa?oi, /anoeia? eiaiiieia??, iiii?ae A?aoa?a, eiaiiieia?/ia aei??i?noue, ?aoeaeoeaia i?aeeaoaai??y, eaioethaiaee eiiieaen, neiie?oe?aeueiee eiiieaen. Novikov B.V. Cohomology of semigroups. Manuscript. Thesis of the dissertation for obtaining of the degree of doctor of sciences in physics and mathematics, speciality 01.01.06 – algebra and number theory. Kyiv Taras Shevchenko University, Kyiv, 1999. The thesis is devoted to investigation of semigroup cohomology and its applications. Properties of semigroups of cohomological dimension 1 are studied, in particular, the weakened Mitchell conjecture is proved. A new construction of partial cohomology is proposed, its cotriple presentation and relation to Eilenberg – MacLane cohomology is obtained. The Eilenberg – MacLane cohomology groups of some classes of semigroups are founded with the help of partial cohomology, and, in particular, the serie of counter-examples to the Mitchell conjecture is given. The using of partial cohomology for classification of the strongly primary algebras is proposed, new properties of the Brauer monoid are obtained. Key words: semigroups, cohomology groups of semigroups, partial cohomology, Brauer monoid, cohomological dimension, reflective subcategory, chain complex, simplicial complex. Iiaeeia A. A. Eiaiiieiaee iieoa?oii. – ?oeiienue. Aeenna?oaoeey ia nieneaiea o/aiie noaiaie aeieoi?a oeceei-iaoaiaoe/aneeo iaoe ii niaoeeaeueiinoe 01.01.06 – aeaaa?a e oai?ey /enae.- Eeaaneee oieaa?neoao ei. O. Oaa/aiei, Eeaa, 1999. Aeenna?oaoeey iinayuaia enneaaeiaaieth eiaiiieiaee iieoa?oii e eo i?eeiaeaieyi. Iieo/aii i?eiaiaiea 0-eiaiiieiaee e eeanneoeeaoeee neeueii i?eia?iuo aeaaa?. Aaaaeaii iiiyoea iiaeeoeeaoeee a?oiiu e i?aaeeiaeaii iino?iaiea iiiieaea A?aoy?a n iiiiuueth 0-eiaiiieiaee a?oiiu Aaeoa. I?e ii?aaeaeaiiuo oneiaeyo iaeaeaii yae?i aiiiii?oecia eiiiiiaiou iiiieaea A?aoy?a a a?oiio A?aoy?a. Iienaiu iaeioi?ua oeiu iiaeeoeeaoeee oeeeee/aneie a?oiiu i?inoiai ii?yaeea. I?aaeeiaeaia iiaay eiino?oeoeey /anoe/iuo eiaiiieiaee iieoa?oii, ii?aaeaeyaiuo n iiiiuueth /anoe/iuo ooieoeee ec iieoa?oiiu a iiaeoeue iaae iae. A nayce n oai, /oi /anoe/iua eiaiiieiaee ia yaeythony i?iecaiaeiui ooieoi?ii, aeaii eo i?aaenoaaeaiea n iiiiuueth oai?ee Aa??a – Aaea. Aaaaeaii iiiyoea eaiiie/aneiai ei?iy eae ii?iaeaeathuaai iiiaeanoaa, oaeiaeaoai?ythuaai iaeioi?ui oneiaeyi iaeiicia/iinoe ?aceiaeaiey yeaiaioia iieoa?oiiu e caaeathuaai iaeanoue ii?aaeaeaiey aeey /anoe/iuo eioeeeeia. Aeieacaii, /oi aeey eaiiie/aneeo J-ei?iae a?oiiu /anoe/iuo eciii?oiu a?oiiai eiaiiieiaee Yeeaiaa?aa – Iaeeaeia. Iieo/aiiua ?acoeueoaou eniieueciaaiu aeey au/eneaiey eiaiiieiaee Yeeaiaa?aa – Iaeeaeia iaeioi?uo eeannia iieoa?oi e, a /anoiinoe, aeai ?yae eiio?i?eia?ia e aeiioaca Ieo/aeea. Eco/aiu naienoaa iieoa?oii n nie?auaieai eiaiiieiae/aneie ?acia?iinoe 1, a /anoiinoe, aeieacaia ineaaeaiiay aeiioaca Ieo/aeea: iieoa?oiia n nie?auaieai eiaiiieiae/aneie ?acia?iinoe 1 aeeaaeuaaaony a naiaiaeioth a?oiio. A eiiiooaoeaiii neo/aa yoi oneiaea ieacuaaaony iaiaoiaeeiui e aeinoaoi/iui: eiiiooaoeaiay iieoa?oiia n nie?auaieai eiaao ?acia?iinoue 1 oiaaea e oieueei oiaaea, eiaaea iia eciii?oia iiaeiieoa?oiia a?oiiu oeaeuo /enae (a iauai neo/aa, eae iieacuaatho ii?eia?u, i?eaaaeaiiua a aeenna?oaoeee, ia?auaiea ineaaeaiiie aeiioacu Ieo/aeea iaaa?ii). ?anniio?aia naycue iaaeaeo eiaiiieiaeyie iieoa?oiiu e aa ?aoeaeoi?a. Iieo/aiu oneiaey ia ?aoeaeoeaioth iiaeeaoaai?eth, i?e eioi?uo ?aoeaeoi?iue ii?oeci eiaeooee?oao eciii?oeci iaeiiia?iuo eiaiiieiaee e iiiiii?oeci aeaoia?iuo eiaiiieiaee (a /anoiinoe, oaeiauie ieacuaathony iiaeeaoaai?ee a?oii, aiieia i?inouo iieoa?oii e eeeooi?aeiauo iieoa?oii). I?aaeeiaeaia iiaay eiino?oeoeey aeey a?oiiiaiai ?aoeaeoi?a iieoa?oiiu n nie?auaieai. Ii?aaeaeaii iiiyoea eiiieaena Eyee aeey iieoa?oiiu, onoaiiaeaiu niioiioaiey iaaeaeo aai a?oiiaie neiieeoeeaeueiuo eiaiiieiaee e eiaiiieiaeyie enoiaeiie iieoa?oiiu. Eeth/aaua neiaa: iieoa?oiiu, a?oiiu eiaiiieiaee iieoa?oii, /anoe/iua eiaiiieiaee, iiiieae A?aoy?a, eiaiiieiae/aneay ?acia?iinoue, ?aoeaeoeaiay iiaeeaoaai?ey, oeaiiie eiiieaen, neiieeoeeaeueiue eiiieaen. PAGE 34 PAGE 34 PAGE 28

Похожие записи