Ee?anueeee oi?aa?neoao ?iai? Oa?ana Oaa/aiea

Eaaeoeueea A?eoi??y Nieia??aia

OAeE 512.58+515.12

AEAAA?I-OIIIEIA?*I? AEANOEAINO? OOIEOI??A, II?IAeAEAIEO
OOIEOe?IIAEUeIEIE I?INOI?AIE

01.01.06 SYMBOL 45 \f «Symbol» \s 14 — aeaaa?a ? oai??y /enae

AAOI?AOA?AO

aeena?oaoe?? ia caeiaoooy iaoeiaiai nooiaiy

eaiaeeaeaoa o?ceei-iaoaiaoe/ieo iaoe

Ee?a SYMBOL 45 \f «Symbol» \s 14 — 1999

Aeena?oaoe??th ? ?oeiien.

?iaioa aeeiiaia a Euea?anueeiio aea?aeaaiiio oi?aa?neoao? ?iai? ?aaia
O?aiea ia eaoaae?? aeaaa?e ? oiiieia??.

Iaoeiaee ea??aiee

aeieoi? o?ceei-iaoaiaoe/ieo iaoe, i?ioani?

Ca??/iee Ieoaeei Ieoaeeiae/,

caa?aeoaa/ eaoaae?e aeaaa?e ? oiiieia??

Euea?anueeiai iaoe?iiaeueiiai oi?aa?neoaoo ?iai? ?aaia O?aiea

Io?oe?ei? iiiiaioe:

aeieoi? o?ceei-iaoaiaoe/ieo iaoe, i?ioani?

I?ioania ?ai? Aieiaeeie?iae/,

i?ioani? eaoaae?e aeine?aeaeaiiy iia?aoe?e

Ee?anueeiai oi?aa?neoaoo ?iai? Oa?ana Oaa/aiea

eaiaeeaeao o?ceei-iaoaiaoe/ieo iaoe

Oaeaeei Aiae??e Aiaaeaiiae/,

aeeeaaea/ eaoaae?e aaoiiaoeciaaieo nenoai ? i?ia?aioaaiiy

Oa?iii?euenueei? aeaaeai?? ia?iaeiiai ainiiaea?noaa

I?ia?aeia onoaiiaa

?inoeooo iaoaiaoeee IAI Oe?a?ie, a?aeae?e aeaaa?e, i.Ee?a

Caoeno a?aeaoaeaoueny “20” a?oaeiy 1999 ?ieo i 15.00 aiae. ia
can?aeaii? niaoe?ae?ciaaii? a/aii? ?aaee Ae 26.001.18 Ee?anueeiai
oi?aa?neoaoo ?iai? Oa?ana Oaa/aiea ca aae?anith: 252127, i.Ee?a – 127,
i?iniaeo aeaaeai?ea Aeooeiaa, 6, Ee?anueeee oi?aa?neoao ?iai? Oa?ana
Oaa/aiea, iaoai?ei-iaoaiaoe/iee oaeoeueoao.

C aeena?oaoe??th iiaeia iciaeiieoenue o a?ae?ioaoe? Ee?anueeiai
oi?aa?neoaoo ?iai? Oa?ana Oaa/aiea (aoe. Aieiaeeie?nueea, 58).

Aaoi?aoa?ao ?ic?neaiee “_15__” _____11_________ 1999 ?.

A/aiee nae?aoa?

ciaoe?ae?ciaaii? a/aii? ?aaee ____________ A.I.Iao?aa/oe

Caaaeueia oa?aeoa?enoeea ?iaioe

Aeooaeuei?noue oaie. I?inoi?e iaia?a?aieo a?aeia?aaeaiue, cie?aia,
i?inoi?e iaia?a?aieo ooieoe?e ? ia’?eoaie aeine?aeaeaiiy a ??cieo
?icae?eao iaoaiaoeee. A aeaaa?a?/i?e oiiieia?? i?inoi?e iaia?a?aieo
a?aeia?aaeaiue aenooiathoue aaaeeeaei caniaii aeey iiaoaeiae iiaeo
oiiieia?/ieo ia’?eo?a (i?eeeaaeaie iiaeooue neoaeeoe i?inoi?e iaoaeue);
i?e oeueiio oe?iei aeei?enoiao?oueny aeanoea?noue ?o ooieoi??aeueiino?.

sse aeaaa?i-oiiieia?/iee ia’?eo i?inoi?e iaia?a?aieo a?aeia?aaeaiue
iiaeooue iaae?eyoeny ??cieie oiiieia?yie. Aeaye? c oeeo oiiieia?e o?nii
iia’ycai? c eaoaai?ieie aeanoeainoyie ooieoe?iiaeueieo i?inoi??a.
Iaei??th c iaeaaaeeea?oeo oaeeo oiiieia?e ? oae caaia eiaa??aioia
oiiieia?y, yea i?ae ??cieie iacaaie ? a ??ciiio eiioaeno? ii/aea
?icaeyaeaoeny c 50-o ?ie?a, a oaeiae oiiieia?y iioi/eiai? ca?aeiino?
(oe?e oiiieia?? i?enay/aii iiiia?ao?th).

Cia/io ?ieue ooieoe?iiaeuei? i?inoi?e a?ae?a?athoue a
iane?i/aiiiaei??i?e oiiieia??. O a?aeiiiio nieneo i?iaeai
ooieoe?iiaeueiei i?inoi?ai a?aeaaaeaii oe?eee ?icae?e. Caaaea?ii ooo
eeoa o? i?iaeaie, ye? aaciina?aaeiuei iia’ycai? c ooieoi??aeuei?noth
ooieoe?iiaeueieo i?inoi??a.

sseui o SYMBOL 45 \f «Symbol» \s 14 — iaaeene?aoiee eiiiaeoiee
iao?e/iee i?ino??, a o SYMBOL 45 \f «Symbol» \s 14 — iaaeene?aoiee
eieaeueii-eiiiaeoiee i?ino??, ui ? aaniethoiei ieieiaei ?ao?aeoii (ANR)
aeey iao?e/ieo i?inoi??a, oi i?ino?? iaia?a?aieo ooieoe?e a oiiieia??
??aiii??ii? ca?aeiino? aiiaiii?oiee iaeano? a a?eueaa?oiaiio i?inoi??, a
ioaea, ia? no?oeoo?o aeaaeeiai -iiiaiaeaeo. A caaaeai?e noaoo? Aanoa
noi?ioeueiaaii ieoaiiy i?i ?nioaaiiy i?e?iaeii? (oiaoi oaei?, ui
ooieoi??aeueii caeaaeeoue a?ae o) aeaaeei? no?oeoo?e ia o aeiaaeeo,
eiee o ia ? aeaaeeei iiiaiaeaeii.

. I?iaeaia iieyaa? a oiio, /e ?nio? i?e?iaeia (ooieoi??aeueia)
oiiieia?caoe?y iiiaeeie, yea ia?aoai?th? oeth iiiaeeio a — iiiaiaeae.

?ioa i?iaeaia noino?oueny i?inoi??a eoneiai-e?i?eieo a?aeia?aaeaiue
Eaoaai??y iie?aae??a ? eoneiai-e?i?eieo a?aeia?aaeaiue iicia/a?oueny PL.
sseui o ? o SYMBOL 45 \f «Symbol» \s 14 — iie?aae?e, oi i?ino?? PL o
eiiiaeoii-a?aee?eo?e oiiieia?? aiiaiii?oiee iiiaiaeaeia?,
iiaeaeueiaaiiio ia i?inoi?? ( aeea. ).

aeiionea? i?e?iaeia iineeaiiy oiiieia??. ?icaeyiaii i?ino?? .

O oeeoiaaiiio aeua nieneo i?iaeai noi?ioeueiaaii ieoaiiy: /e ?nio?
i?e?iaeia (ooieoi??aeueia) oiiieia?caoe?y i?inoi?o PL.

A aeena?oaoe?? ii?yae c aeine?aeaeaiiyie ooieoi??aeueieo oiiieia?caoe?e
ooieoe?iiaeueieo i?inoi??a c caaeaieie oiiieia?/ieie aeanoeainoyie
?icaeyaeathoueny oaeiae ooieoi??aeuei? aeeoa?aioe?aeuei? no?oeoo?e ia
ooieoe?iiaeueieo i?inoi?ao. Cacia/eii, ui caaea/a i?i ?nioaaiiy oaei?
ooieoi??aeueii? aeeoa?aioe?aeueii? no?oeoo?e ia i?inoi?ao iaia?a?aieo
a?aeia?aaeaiue c? cia/aiiyie a i?inoi??, ui ia ia? no?oeoo?e
aeeoa?aioe?eiaiiai iiiaiaeaea oaeiae noi?ioeueiaaia a .

Iaei??th c iaeaaaeeea?oeo aeanoeainoae ooieoe?iiaeueieo i?inoi??a, yea
oe?iei aeei?enoiao?oueny a iaoaiaoeoe?, ? aeniiiaioe?aeueiee caeii:

ui aeeiiothoueny i?e iaaieo oiiieia?/ieo iaiaaeaiiyo ia i?inoi?e X, Y
? Z. Oeae aeniiiaioe?aeueiee caeii ii?iaeaeo? neooaoe?th ni?yaeaiiy
ooieoi??a iiiaeaiiy ia i?ino?? ? ooieoi?a i?inoi?o iaia?a?aieo
a?aeia?aaeaiue a caaeaiee i?ino??.

A oai??? eaoaai??e aeey iieno ni?yaeaiiy aeei?enoiao?oueny iiiyooy
iiiaaee (o??eee, a ?io?e oa?i?iieia??; icia/aiiy aeea. ieae/a). C ?ioiai
aieo, iiiyooy iiiaaee iiaea oaeiae ?icaeyaeaoeny ye ?acoeueoao
aano?aaoaaiiy iiiyooy iiii?aea.

Eiaeia iiiaaea O ia eaoaai??? C ii?iaeaeo? aea? eaiii?/i? neooaoe??
ni?yaeaiiy

(UT, FT): CT C (UT, FT): CTC,

aea CT SYMBOL 45 \f «Symbol» \s 14 — oae caaia eaoaai??y Eeaene?
iiiaaee O (eaoaai??y T-cia/ieo a?aeia?aaeaiue aai eaoaai??y a?eueieo
O-aeaaa?), a CT SYMBOL 45 \f «Symbol» \s 14 — eaoaai??y O-aeaaa?
iiiaaee O (eaoaai??y Aeeaiaa?aa-Io?a). Aaaaoi aaoi??a ?icaeyaeaee
caaaeueio i?iaeaio aioo??oiuei? oa?aeoa?ecaoe?? O-aeaaa?. Oe? i?iaeaie
?ica’ycaii a ?yae? ioae?eaoe?e aeey oe?ieiai eeano iiiaae a eaoaai??yo
eiiiaeo?a ? oeoiiianueeeo i?inoi??a. Iai?eeeaae, eaoaai??y aeaaa? aeey
iiiaaee a?ia?i?inoi?o ?ciii?oia eaoaai??? iai?aa?aoie Eioniia , a
eaoaai??y aeaaa? iiiaaee eiia??iinieo i?? ?ciii?oia eaoaai??? iioeeeo
eiiiaeo?a ? ao?iieo a?aeia?aaeaiue , eaoaai??y aeaaa? iiiaaee
noia??icoe?aiiy ?ciii?oia eaoaai??? eiiiaeoieo i?inoi??a c caieiaieie
ia?aaeaacaie niaoe?aeueiiai aeaeyaeo, ui aecia/athoue no?oeoo?o
iioeeino?, ? iaia?a?aieo a?aeia?aaeaiue, ui caa??aathoue iioee?noue ;
eaoaai??y O-aeaaa? aeey iiiaaee a?ia?i?inoi??a aeeth/aiiy ?ciii?oia
eaoaai??? a?aoie Eioniia .

Aeey iiiaae a eaoaai??? OI? oa ??cieo ?? i?aeeaoaai??yo eaoaai???
Eeaene? /anoi aeiioneathoue i?e?iaeiee iien. Cie?aia, eaoaai??y Eeaene?
iiiaaee a?ia?i?inoi?o ? eaoaai???th oiiieia?/ieo i?inoi??a ?
aaaaoicia/ieo (eiiiaeoiicia/ieo, ne?i/aiiicia/ieo ? o. i.)
a?aeia?aaeaiue. O ca’yceo c i?iaeaiaie, ui aeieeathoue a oai???
aaoiiao?a, I. A?a?a ? A. Iaein ?icaeyaeaee caaea/o i?iaeiaaeaiiy
eiaa??aioieo ooieoi??a ia eaoaai??th Eeaene? iiiaaee. E?eoa??e ?nioaaiiy
oaeiai i?iaeiaaeaiiy aeaa ?. A?ia?ae ? ia iniia? oeueiai e?eoa??th I.
Ca??/iee ?ica’ycaa oeth caaea/o aeey ?yaeo ooieoi??a ne?i/aiiiai noaiaiy
a eaoaai??yo eiiiaeo?a ? oeoiiianueeeo i?inoi??a .

Caaea/? i?i i?iaeiaaeaiiy ooieoi??a ia eaoaai??? Eeaene? iiiaae a
eaoaai??? eiiiaeoieo aaonaei?oiaeo i?inoi??a (eiiiaeo?a) ? iaia?a?aieo
a?aeia?aaeaiue COMP o?nii iia’ycai? c ?acoeueoaoaie ?.A.Uai?ia oa ?ioeo
aaoi??a, ui noinothoueny iaiao?eciaieo eiiiaeo?a. Cie?aia, ?yae eean?a
iaiao?eciaieo eiiiaeo?a oa?aeoa?eco?oueny ye ?i’?eoeai? ia’?eoe a
eaoaai??? eiiiaeo?a, aea ii?o?ciaie aenooiathoue O-cia/i?
a?aeia?aaeaiiy, oiaoi ii?o?cie eaoaai??? Eeaene?.

Aeoaeueiith caaea/ath aei caaea/? i?iaeiaaeaiiy eiaa??aioieo ooieoi??a
ia eaoaai??th Eeaene? ? caaea/a i?aeiyooy eiaa??aioieo ooieoi??a ia
eaoaai??? aeaaa?. ?yae ?acoeueoao?a i?i i?aeiyooy ooieoi??a ne?i/aiiiai
noaiaiy ia eaoaai??? O-aeaaa? iiaeia ciaeoe a .

Ine?eueee i?e o?eniaai?e iaeano? cia/aiue eiino?oeoe?y ooieoe?iiaeueiiai
i?inoi?o ? eiio?aaa??aioiei ooieoi?ii o aeaye?e i?aeeaoaai??? eaoaai???
oiiieia?/ieo i?inoi??a ? iaia?a?aieo a?aeia?aaeaiue, i?e?iaeii
?icaeyaeaoe noi?ioeueiaai? aeua caaea/? i?iaeiaaeaiiy ia eaoaai???
Eeaene? oa i?aeiyooy ia eaoaai??? aeaaa? aeey eiio?aaa??aioieo
ooieoi??a. Oea ? iaei??th c oe?eae aeena?oaoe??.

Ca’ycie ?iaioe c iaoeiaeie i?ia?aiaie, ieaiaie, oaiaie. Oaiaoeea
aeena?oaoe?? iia’ycaia c aeine?aeaeaiiyie eaoaae?e aeaaa?e ? oiiieia??
Euea?anueeiai aea?aeaaiiai oi?aa?neoaoo ?iai? ?aaia O?aiea, ??
?acoeueoaoe /anoeiai aeei?enoai? i?e aeeiiaii? caaaeaiue
aea?aeathaeaeaoii? oaie “Aeaaa?i-oiiieia?/i? no?oeoo?e” ca
?a?no?aoe?eiei iiia?ii 01.93V041397.

Iaoa ? caaea/? aeine?aeaeaiiy. Iaoith aeena?oaoe?? ?:

( anoaiiaeoe ?nioaaiiy ooieoi??aeueieo oiiieia?caoe?e iiiaeei
iaia?a?aieo oa eoneiai-e?i?eieo a?aeia?aaeaiue c caaeaieie oiiieia?/ieie
aeanoeainoyie, a oaeiae ?nioaaiiy ooieoi??aeueieo aeeoa?aioe?eiaieo
no?oeoo? ia i?inoi?ao iaia?a?aieo a?aeia?aaeaiue;

( ?ica’ycaoe caaea/o i?iaeiaaeaiiy eiio?aaa??aioiiai ooieoi?a N?
i?inoi??a iaia?a?aieo ooieoe?e a oiiieia?? iioi/eiai? ca?aeiino? ia
eaoaai??? Eeaene? (= eaoaai??? a?eueieo aeaaa?) iiiaae a eaoaai??yo
oeoiiianueeeo i?inoi??a;

( anoaiiaeoe e?eoa??e ?nioaaiiy i?aeiyooy eiio?aaa??aioieo ooieoi??a ia
eaoaai??? O-aeaaa? iiiaae ? canoinoaaoe eiai aei caaea/? i?aeiyooy
eiio?aaa??aioiiai ooieoi?a N? ia eaoaai??? O-aeaaa?.

Iaoeiaa iiaecia iaea?aeaieo ?acoeueoao?a. A aeena?oaoe?? io?eiaii oae?
iia? ?acoeueoaoe:

SYMBOL 45 \f «Symbol» \s 14 — aaaaeaii iiiyooy ooieoi??aeueii?
oiiieia?caoe?? iiiaeei iaia?a?aieo a?aeia?aaeaiue ? aeiaaaeaii, ui ia
?nio? ?aaoey?ii? ooieoi??aeueii? oiiieia?caoe??, yea ia? nai?ie
cia/aiiyie a?eueaa?o?a i?ino?? c iaiaaeaii-neaaeith oiiieia??th;

SYMBOL 45 \f «Symbol» \s 14 — iiaoaeiaaii ooieoi??aeueio
oiiieia?caoe?th aeey iiiaeei eoneiai-e?i?eieo a?aeia?aaeaiue, yea
ia?aoai?th? eiiiaeoi? iane?i/aii? iie?aae?e a iane?i/aiiiaei??i?
iiiaiaeaee, iiaeaeueiaai? ia i?yieo a?aieoeyo aaee?aeiaeo i?inoi??a;

SYMBOL 45 \f «Symbol» \s 14 — aaaaeaii iiiyooy ooieoi??aeueii?
aeeoa?aioe?eiaii? no?oeoo?e ia iane?i/aiiiaei??ieo iiiaiaeaeao,
iiaeaeueiaaieo ia oiiieia?/ieo e?i?eieo i?inoi?ao, ? iieacaii, ui o
aeiaaeeo, eiee i?ino?? cia/aiue ia ia? no?oeoo?e (ne?i/aiiiaei??iiai)
aeaaeeiai iiiaiaeaea, ia i?inoi?? a?aeia?aaeaiue a oeae i?ino?? c
eiiiaeoii-a?aee?eoith oiiieia??th ia ?nio? ooieoi??aeueii?
aeeoa?aioe?eiaii? no?oeoo?e;

SYMBOL 45 \f «Symbol» \s 14 — anoaiiaeaii caaaeueiee e?eoa??e
i?iaeiaaeaiiy eiio?aaa??aioieo ooieoi??a ia eaoaai??? Eeaene? iiiaaee ?
ia iniia? oeueiai e?eoa??th aeiaaaeaii, ui eiio?aaa??aioiee ooieoi?
i?inoi?o iaia?a?aieo ooieoe?e a oiiieia?? iioi/eiai? ca?aeiino? a oaeiae
eiai o?aino?i?oi? ?oa?aoe?? aeiioneathoue i?iaeiaaeaiiy ia eaoaai???
Eeaene? iiiaaee a?ia?i?inoi?o ne?i/aiieo i?aeiiiaeei;

SYMBOL 45 \f «Symbol» \s 14 — iieacaii, ui ?niothoue i?iaeiaaeaiiy
Hom-ooieoi?a ia eaoaai??? Eeaene? aeayeiai oe?ieiai eeano iiiaae a
eaoaai??? eiiiaeo?a;

SYMBOL 45 \f «Symbol» \s 14 — anoaiiaeaii caaaeueiee e?eoa??e
?nioaaiiy i?aeiyooy eiio?aaa??aioieo ooieoi??a ia eaoaai??? T-aeaaa?, ui
aaco?oueny ia ?nioaaii? i?e?iaeieo ia?aoai?aiue aeayeiai niaoe?aeueiiai
aeaeyaeo. Oeae e?eoa??e canoiniaaii aei eiio?aaa??aioiiai ooieoi?a
i?inoi??a iaia?a?aieo ooieoe?e a oiiieia?? iioi/eiai? ca?aeiino? ?
iiiaaee, ii?iaeaeaii? ooieoi?ii.

An? ?acoeueoaoe io?eiaii aia?oa.

I?aeoe/ia oa oai?aoe/ia cia/aiiy iaea?aeaieo ?acoeueoao?a. Aeena?oaoe?y
ia? oai?aoe/ia cia/aiiy. ?? ?acoeueoaoe, iiaeooue aooe aeei?enoai? a
oai??? eaoaai??e, oiiieia?/i?e aeaaa??, eaoaai?i?e oiiieia??, oiiieia??
iane?i/aiiiaei??ieo (aeeoa?aioe?eiaieo) iiiaiaeae?a.

Iniaenoee aianie caeiaoaa/a. An? ?acoeueoaoe aeena?oaoe?? io?eiai?
aaoi?ii naiino?eii. C? ni?eueieo c I.I. Ca??/iei i?aoeue a aeena?oaoe?th
aeeth/aii eeoa o?, ui iaeaaeaoue aaoi?ia?.

Ai?iaaoe?y ?acoeueoao?a aeena?oaoe??. ?acoeueoaoe aeena?oaoe??
aeiiia?aeaeeny ia:

SYMBOL 45 \f «Symbol» \s 14 — I?aeia?iaei?e eiioa?aioe?? «E?eueoey ?
iiaeoe?» (Euea?a(Etha?iue Aaeeeee, 1996 ?.);

SYMBOL 45 \f «Symbol» \s 14 — I?aeia?iaei?e aeaaa?a?/i?e eiioa?aioe??,
i?enay/ai?e iai’yo? i?io. E.I. Aeone?ia o Neia’yinueeo (1997);

SYMBOL 45 \f «Symbol» \s 14 — i?aeia?iaei?e eiioa?aioe?? «No/ani?
i?iaeaie iaoaiaoeee» (*a?i?aoe?, 1998 ?.);

SYMBOL 45 \f «Symbol» \s 14 — Ae?oa?e i?aeia?iaei?e aeaaa?a?/i?e
eiioa?aioe??, i?enay/ai?e iai’yo? i?io. E. A. Eaeoaei?ia
(Ee?a(A?iieoey, 1999 ?.);

SYMBOL 45 \f «Symbol» \s 14 — I?aeia?iaei?e aeaaa?a?/i?e eiioa?aioe??,
i?enay/ai?e 100-??//th TH.-I. Oaoaea?a (Euea?a, 1999 ?.);

SYMBOL 45 \f «Symbol» \s 14 — nai?ia?ao eaoaae?e aeaaa?e ? oiiieia?? o
Euea?anueeiio aea?aeaaiiio oi?aa?neoao? ?iai? ?aaia O?aiea.

Ioae?eaoe??. ?acoeueoaoe aeena?oaoe?? iioae?eiaaii o i?aoeyo [1 SYMBOL
45 \f «Symbol» \s 14 — 8], nienie yeeo iaaaaeaii a e?ioe? aaoi?aoa?aoo.
C ieo 4 noaoo? iaae?oeiaaii o oaoiaeo aeaeaiiyo, caoaa?aeaeaieo AAE
Oe?a?ie.

No?oeoo?a ? ia’?i ?iaioe. Aeena?oaoe?y neeaaea?oueny c? 7 ?icae?e?a,
?icaeoeo ia i?ae?icae?ee, aeniiae?a ? nieneo aeei?enoaieo aeaea?ae.
Ianya aeena?oaoe?? neeaaea? 106 noi??iie. Nienie aeei?enoaieo aeaea?ae
ianyaii 4 noi??iee aeeth/a? 43 iaeiaioaaiiy.

Aaoi? aeneiaeth? iiaeyeo iaoeiaiio ea??aieeia? i?io. I.I. Ca??/iiio ca
iino?eio oaaao aei ?iaioe.

INIIAIEE CI?NO

Anooii? ?icae?ee i?noyoue iaeyae e?oa?aoo?e, a oaeiae iaiao?aeio
oa?i?iieia?th ? iicia/aiiy.

A ?icae?e? 5 ?icaeyaeathoueny iiiyooy ooieoi??aeueii? oiiieia?caoe??
iiiaeei iaia?a?aieo a?aeia?aaeaiue, a oaeiae iiiyooy ooieoi??aeueii?
no?oeoo?e aeeoa?aioe?eiaiiai iiiaiaeaea ia i?inoi?ao iaia?a?aieo
a?aeia?aaeaiue, ui ? oiiieia?/ieie iiiaiaeaeaie, iiaeaeueiaaieie ia
iane?i/aiiiaei??ieo oiiieia?/ieo e?i?eieo i?inoi?ao.

Aeey oiiieia?/ieo i?inoi??a o ? o /a?ac iicia/a?ii iiiaeeio an?o
iaia?a?aieo a?aeia?aaeaiue c i?inoi?o o a i?ino?? o. I?e o?eniaaiiio o
iaea?aeo?ii eiaa??aioiee ooieoi?

a i?e o?eniaaiiio o SYMBOL 45 \f «Symbol» \s 14 — eiio?aaa??aioiee
ooieoi?

(ooo /a?ac TOP iicia/aii eaoaai??th oiiieia?/ieo i?inoi??a ? iaia?a?aieo
a?aeia?aaeaiue, a /a?ac SET ( eaoaai??th iiiaeei).

Iaoae TOP SET SYMBOL 45 \f «Symbol» \s 14 — caaoaath/ee ooieoi?.

TOP oaeee, ui

Iaei??th c ooieoi??aeueieo oiiieia?caoe?e ooieoi?a TYCHSET ? oiiieia?y
iioi/eiai? ca?aeiino? N?. I?e oeueiio aacith oiiieia?? i?inoi?o N?O ?
iiiaeeie aeaeyaeo

ia i?aei?ino?? noaeeo a?aeia?aaeaiue ? aiiaiii?o?ciii oeueiai
i?aei?inoi?o ia.

Oaa?aeaeaiiy 5.0.5. ? Oai?aia 5.2.1. noinothoueny noi?ioeueiaaieo aeua
i?iaeai Aeae.Aanoa.

5.0.5. Oaa?aeaeaiiy. Ia ?nio? ?aaoey?ii? ooieoi??aeueii? oiiieia?caoe??
ooieoi?a oaei?, ui i?ino?? aiiaiii?oiee.

iicia/a?oueny i?yia a?aieoey iine?aeiaiino? aaee?aeiaeo i?inoi??.

5.2.1. Oai?aia. Iaoae o ( iane?i/aiiee iie?aae?. ?nio? ooieoi??aeueia
oiiieia?caoe?y ooieoi?a PL oaea, ui aeey eiaeiiai iane?i/aiiiai
iie?aae?a i?ino?? PL ? -iiiaiaeaeii.

sseui Y ia? no?oeoo?o (iane?i/aiiiaei??iiai) Nr — iiiaiaeaeo, oi ia
iiiaeei? Ns(X,Y) iiaeia i?e?iaeii aaanoe no?oeoo?o aeeoa?aioe?eiaiiai
iiiaiaeaea. Aeey iiaiiai Y a?aeiii, ui (a eiiiaeoii-a?aee?eo?e
oiiieia??) ? eiio?aaa??aioiei ooieoi?ii c eaoaai??? iane?i/aiieo
iao?e/ieo naia?aaaeueieo i?inoi??a a eaoaai??th iane?i/aiiiaei??ieo Nr
— iiiaiaeae?a, iiaeaeueiaaieo ia naia?aaaeueiiio a?eueaa?oiaiio
i?inoi??.

Aeiaiaeeoueny, ui ia ?nio? ooieoi??aeueii? aeeoa?aioe?eiaii? no?oeoo?e
ia ooieoi?? aeey iao?e/iiai eiiiaeoiiai, yeui ia iaae?eaiee
no?oeoo?ith aeeoa?aioe?eiaiiai iiiaiaeaea.

A ?icae?e? 6 ?icaeyaea?oueny caaaeueia caaea/a i?iaeiaaeaiiy
eiio?aaa??aioieo ooieoi??a ia eaoaai??? Eeaene? iiiaaee. Iaaaaea?ii
nii/aoeo, ui iiiaaeith ia eaoaai??? C iaceaa?oueny o??eea

Eaoaai???th Eeaene? iiiaaee O iaceaa?oueny eaoaai??y CT, icia/aia
oiiaaie:

= C, ? eiiiiceoe?y ii?o?ci?a caaea?oueny oi?ioeith:.

C CT oiiaith:

Eiio?aaa??aioiee ooieoi? CT CT iaceaa?oueny i?iaeiaaeaiiyi ooieoi?a
ia eaoaai??th Eeaene? CT, yeui aeeiio?oueny ianooiia oiiaa:

Oai?aia 6.2.1. aea? e?eoa??e aeey ?nioaaiiy i?iaeiaaeaiiy
eiio?aaa??aioieo ooieoi??a ia eaoaai??? Eeaene? iiiaaee.

ia eaoaai??th CT ? i?e?iaeieie ia?aoai?aiiyie, ui caaeiaieueiythoue
oiiae:

Aeiaaaeaiiy oai?aie 6.2.1. iieaco?, ui a??eoeaia a?aeiia?aei?noue, i?i
yeo eaeaoueny a oe?e oai?ai?, caaea?oueny oaeeie eiino?oeoe?yie:

— i?e?iaeiiio ia?aoai?aiith , ui caaeiaieueiy? oiiae 1) ? 2),
a?aeiia?aea? i?iaeiaaeaiiy, ui aecia/a?oueny oiiaaie:

— i?iaeiaaeaiith ooieoi?a ia CT a?aeiia?aea? ia?aoai?aiiy

Iiiaaeo O iaceaathoue i?iaeoeaiith (J. Vinarek), yeui ?nio? ii?o?ci
iiiaae 1=(1,1,1) T. Iieacaii (Oaa?aeaeaiiy 6.2.3.), ui eiaeai
eiio?aaa??aioiee aiaeiooieoi? a N ia? i?iaeiaaeaiiy ia eaoaai??th
Eeaene? i?iaeoeaii? iiiaaee. sse iane?aeie iaea?aeo?ii, ui
eiio?aaa??aioiee ooieoi? a eaoaai??? TYCH ia? i?iaeiaaeaiiy ia
eaoaai??th Eeaene? noaiaiaai? iiiaaee.

A?aeiii, ui eiaa??aioiee ooieoi? N?2=N?N? ii?iaeaeo? iiiaaeo ia
eaoaai??? oeoiiianueeeo i?inoi??a TYCH. Aeey oe??? iiiaaee i?e?iaeia
ia?aoai?aiiy caaea?oueny oiiaith:

I?e?iaeia ia?aoai?aiiy caaea?oueny oi?ioeith.

6.2.6. Oai?aia. Eiio?aaa??aioiee ooieoi? ia? i?iaeiaaeaiiy ia
eaoaai??th, aea T( iiiaaea, ii?iaeaeaia ooieoi?ii.

Iaoae ( iiiaaea a?ia?i?inoi?o ia eaoaai??? oeoiiianueeeo i?inoi??a oa
iaia?a?aieo a?aeia?aaeaiue TYCH.

oiiieia?y A’?oi??na a caaea?oueny aacith

( a?aeia?aaeaiiy neiaeaoiio, *a?ac iicia/eii ?? i?aeiiiaaeo
a?ia?i?inoi?o ne?i/aiieo i?aeiiiaeei.

Eaoaai???th Eeaene? iiiaaee I (a?aeiia?aeii) ? eaoaai??y oeoiiianueeeo
i?inoi??a ? eiiiaeoiicia/ieo (ne?i/aiiicia/ieo) iaia?a?aieo
a?aeia?aaeaiue.

ia eaoaai??th Eeaene? iiiaaee.

Aeey iiiaaee a?ia?i?inoi?o eiiiaeoieo i?aeiiiaeei ia eaoaai???
oeoiiianueeeo i?inoi??a oa iaia?a?aieo a?aeia?aaeaiue iaea?aeo?ii
iaaaoeaiee ?acoeueoao.

6.3.4. Oai?aia. Ia ?nio? i?iaeiaaeaiiy eiio?aaa??aioiiai ooieoi?a ia
eaoaai??th Eeaene? iiiaaee.

?icaeyaeathoueny oaeiae i?iaeiaaeaiiy oiiieia?caoe?e -ooieoi?a ia
eaoaai??? Eeaene?. Eiaeai ia’?eo a eaoaai??? aecia/a? eiio?aaa??aioiee
ooieoi?. sseui ( i?aeeaoaai??y eaoaai??? oi?, oi ooieoi? aeiionea?
i?e?iaeio oiiieia?caoe?th, yeo ie iicia/aoeiaii (aeiaooie
?icaeyaea?oueny a oeoiiianuee?e oiiieia??). Aoaeaii oaeiae ?icaeyaeaoe
i?aeooieoi? ooieoi?a : (/a?ac iicia/aii iia?aoe?th caieeaiiy a).

Iaaaaea?ii, ui ii?iaeueiei ooieoi?ii a eaoaai??? COMP iaceaathoue
oiiieia?/ii iaia?a?aiee eiaa??aioiee aiaeiooieoi?, ui caa??aa? aaao,
iiii- ? ai?ii?o?cie, ia?aoeie, i?iia?ace, a oaeiae ?i?oe?aeueiee ?
o?iaeueiee ia’?eoe eaoaai??? COMP. A?aeiii , ui eiaeai ii?iaeueiee
ooieoi? F ia eaoaai??? COMP ia? i?iaeiaaeaiiy ia eaoaai??th TYCH:

aea /a?ac iicia/a?oueny eiiiaeoeo?eaoe?y Noioia-*aoa oeoiiianueeiai
i?inoi?o X , a icia/a? iin?e aeaiaioa,

6.4.1. Oai?aia. Iaoae O ( iiiaaea ia eaoaai???, ii?iaeaeaia ii?iaeueiei
ooieoi?ii c? ne?i/aiieie iin?yie, ? ( O-aeaaa?a. Oiae? ooieoi?e
aeiioneathoue i?iaeiaaeaiiy ia eaoaai??th.

I?eeeaaeii oaei? iiiaaee ia eaoaai??? TYCH ? caaaeaia aeua eaoaai??y,
?? ne?i/aii? noaiai?, a oaeiae ii?iaeuei? i?aeiiiaaee inoaii?o.

Iaoae aeaa ooieoi?e (ia iaia’yceiai eiio?aaa??aioi?) iathoue
i?iaeiaaeaiiy ia eaoaai??th Eeaene? aeayei? iiiaaee T. Aeieea?
i?e?iaeia caaea/a: eiee eiiiiceoe?y oeeo ooieoi??a ia? i?iaeiaaeaiiy
ia eaoaai??.

6.5.1. Oaa?aeaeaiiy. I?eionoeii, ui eiaa??aioiee ooieoi? ?
eiio?aaa??aioiee ooieoi? iathoue i?iaeiaaeaiiy ia eaoaai??th Eeaene? CT
iiiaaee T= a eaoaai???. Oiae? eiiiiceoe?y ia? i?iaeiaaeaiiy ia
eaoaai??th CT.

Oeae ?acoeueoao canoiniaaii aei caaea/? i?iaeiaaeaiiy ia eaoaai??th
Eeaene? (o?aino?i?oieo) ?oa?aoe?e ooieoi?a. I?e oeueiio eiaeia ia?ia
?oa?aoe?y aecia/a?oueny ca aeiiiiiaith no?oeoo?e iiiaaee ia eaoaai???
TYCH (ooo aeei?enoiao?oueny iiaiioa eaoaai??? TYCH), a iaia?ia ?oa?aoe?y
caaea?oueny ye eiiiiceoe?y.

O ?icae?e? 7 ?icaeyaea?oueny caaea/a i?aeiyooy eiio?aaa??aioieo
ooieoi??a ia eaoaai??? O-aeaaa?, ui ? a aeayeiio ?icoi?ii? aeoaeueiith
aei caaea/? i?iaeiaaeaiiy ooieoi??a ia eaoaai??? Eeaene?.

Iaaaaea?ii icia/aiiy eaoaai??? O-aeaaa?. Aeey iiiaaee O=(O, (, () ia
eaoaai??? N ia?a, aea ( ii?o?ci a N, iaceaa?oueny O-aeaaa?ith, yeui

Ii?o?ci a N iaceaathoue ii?o?ciii O-aeaaa?e a O-aeaaa?o,.

Iicia/eii /a?ac NO eaoaai??th O-aeaaa? ? ?o ii?o?ci?a, a /a?ac (
caaoaath/ee ooieoi?:

I?aeiyooyi ooieoi?a ia eaoaai??th O-aeaaa? iaceaa?oueny ooieoi?

7.1.1. Oai?aia. ?nio? a??eoeaia a?aeiia?aei?noue i?ae i?aeiyooyie
eiio?aaa??aioiiai ooieoi?a ia eaoaai??th ? i?e?iaeieie ia?aoai?aiiyie,
ui caaeiaieueiythoue oiia;.

a oiiieia?? iioi/eiai? ca?aeiino?.

Iniiaiei ?acoeueoaoii oeueiai ?icae?eo ?

eiio?aaa??aioiee ooieoi? aeiionea? i?aeiyooy ia eaoaai??th — aeaaa?.

Aeniiaee

Aaaaeaii iiiyooy ooieoi??aeueii? oiiieia?caoe?? iiiaeei iaia?a?aieo
a?aeia?aaeaiue. Aeiaaaeaii, ui ia ?nio? ?aaoey?ii? ooieoi??aeueii?
oiiieia?caoe??, yea ia? nai?ie cia/aiiyie a?eueaa?o?a i?ino?? c
iaiaaeaii-neaaeith oiiieia??th. Iiaoaeiaaii ooieoi??aeueio
oiiieia?caoe?th aeey iiiaeei eoneiai-e?i?eieo a?aeia?aaeaiue, yea
ia?aoai?th? eiiiaeoi? iane?i/aii? iie?aae?e a iane?i/aiiiaei??i?
iiiaiaeaee, iiaeaeueiaai? ia i?yieo a?aieoeyo aaee?aeiaeo i?inoi??a.
Aaaaeaii iiiyooy ooieoi??aeueii? aeeoa?aioe?eiaii? no?oeoo?e ia
iane?i/aiiiaei??ieo iiiaiaeaeao, iiaeaeueiaaieo ia oiiieia?/ieo e?i?eieo
i?inoi?ao, ? iieacaii, ui o aeiaaeeo, eiee i?ino?? cia/aiue ia ia?
no?oeoo?e (ne?i/aiiiaei??iiai) aeaaeeiai iiiaiaeaea, ia i?inoi??
a?aeia?aaeaiue a oeae i?ino?? c eiiiaeoii-a?aee?eoith oiiieia??th ia
?nio? ooieoi??aeueii? aeeoa?aioe?eiaii? no?oeoo?e.

i?iaeiaaeothoueny ia eaoaai??th Eeaene? iiiaaee, ii?iaeaeaii?
ooieoi?ii.

Nienie IIOAE?EIAAIEO

?IA?O CA OAIITH AeENA?OAOe??

Eaaeoeueea A.N., I?i ooieoi??aeuei? oiiieia?caoe?? ? ooieoi??aeuei?
aeeoa?aioe?eiai? no?oeoo?e ia ooieoe?iiaeueieo i?inoi?ao // A?niee
Euea?a. oi-oo. Na?. iaoai.-iao. 1999, aei. 53. N. 98(101.

Levyts’ka V., On extension of contravariant functors onto the Kleisli
category // Matem. studii. 1998, V. 9. P. 319(327.

Levyts’ka V., On lifting of the contravariant functors onto the
Eilenberg-Moore category // A?niee Euea?a. oi-oo. Na?. iaoai.-iao. 1998,
aei. 49. N. 51(53.

Levyts’ka V., On extension of the contravariant functor onto the
categories of multivalued maps // A?niee Euea?a. oi-oo. Na?. iaoai.-iao.
1998, aei. 51. N. 22(26.

Levyts’ka V., Functorial topologies and differentiable structures on
function spaces. (In: Proc. Intern/ Algebr. Conf., Vinnytsia, 1999.

Levyts’ka V., Functorial topologization of spaces of piecewise-linear
maps.(In: Intern. Algebr. Conf. dedicated to J.-P. Schauder, Lviv, 1999.

Levyts’ka V., Zarichnyi M. Extensions of functors onto the Kleisli
categories: contravariant case, In: Intern. algebr. conf. dedicated to
the memory of prof. L.M.Gluskin. Slovyans’k, 1997. P. 105(106.

Levyts’ka V., Zarichnyi M. Some problems on extensions of contravariant
functors , A ei.: Oace i?aeia?. eiio., *a?i?aoe? , 1998. N. 54(55.

Eaaeoeueea A.N. Aeaaa?i-oiiieia?/i? aeanoeaino? ooieoi??a, ii?iaeaeaieo
ooieoe?iiaeueieie i?inoi?aie.( ?oeiien.

Aeena?oaoe?y ia caeiaoooy iaoeiaiai nooiaiy eaiaeeaeaoa
o?ceei-iaoaiaoe/ieo iaoe ca niaoe?aeuei?noth 01.01.06 ( aeaaa?a ? oai??y
/enae. ( Ee?anueeee oi?aa?neoao ?iai? Oa?ana Oaa/aiea, Ee?a, 1999.

Aeena?oaoe?th i?enay/aii aeine?aeaeaiith eaoaai?ieo aeanoeainoae
ooieoe?iiaeueieo i?inoi??a. ?ica’ycaii caaea/? ?nioaaiiy ooieoi??aeueieo
oiiieia?e ? ooieoi??aeueieo aeeoa?aioe?eiaaieo no?oeoo? c caaeaieie
aeanoeainoyie ia ooieoe?iiaeueieo i?inoi?ao. Anoaiiaeaii caaaeuei?
e?eoa??? ?nioaaiiy i?iaeiaaeaiiy eiio?aaa??aioieo ooieoi??a ia eaoaai???
Eeaene? ? i?aeiyooy eiio?aaa??aioieo ooieoi??a ia eaoaai???
Aeeaiaa?aa-Io?a iiiaae a oa?i?iao ?nioaaiiy i?e?iaeieo ia?aoai?aiue
niaoe?aeueiiai aeaeyaeo. Oe? e?eoa??? canoiniaaii aei eiio?aaa??aioiiai
ooieoi?a i?inoi??a iaia?a?aieo ooieoe?e a oiiieia?? iioi/eiai?
ca?aeiino? oa eiai o?aino?i?oieo ?oa?aoe?e aeey ??cieo iiiaae a
eaoaai??yo oeoiiianueeeo i?inoi??a.

Eeth/ia? neiaa: eiio?aaa??aioiee ooieoi?, i?ino?? iaia?a?aieo
a?aeia?aaeaiue, eaoaai??y oeoiiianueeeo i?inoi??a, eaoaai??y Eeaene?,
eaoaai??y aeaaa?.

Eaaeoeeay A.N. Aeaaa?i-oiiieiae/aneea naienoaa ooieoi?ia, ii?iaeaeaiiuo
ooieoeeiiaeueiuie i?ino?ainoaaie. ( ?oeiienue.

Aeenna?oaoeey ia nieneaiea o/aiie noaiaie eaiaeeaeaoa
oeceei-iaoaiaoe/aneeo iaoe ii niaoeeaeueiinoe 01.01.06 ( aeaaa?a e
oai?ey /enae. ( Eeaaneee oieaa?neoao eiaie Oa?ana Oaa/aiei, Eeaa, 1999.

Aeenna?oaoeey iinayuaia enneaaeiaaieth eaoaai?iuo naienoa
ooieoeeiiaeueiuo i?ino?ainoa. ?aoaia caaea/a nouanoaiaaiey
ooieoi?eaeueiuo oiiieiaee e ooieoi?eaeueiuo aeeooa?aioee?iaaiuo no?oeoo?
n caaeaiuie naienoaaie ia ooieoeeiiaeueiuo i?ino?ainoaao. Ii?aaeaeaiu
iauea e?eoa?ee nouanoaiaaiey i?iaeieaeaiey eiio?aaa?eaioiuo ooieoi?ia ia
eaoaai?ee Eeaenee e iiaeiyoey eiio?aaa?eaioiuo ooieoi?ia ia eaoaai?ee
Yeeaiaa?aa-Io?a iiiaae a oa?ieiao nouanoaiaaiey anoanoaaiiuo
i?aia?aciaaiee niaoeeaeueiiai aeaea. Yoe e?eoa?ee i?eiaiaiu e
eiio?aaa?eaioiiio ooieoi?o i?ino?ainoa iai?a?uaiuo ooieoeee a oiiieiaee
iioi/a/iie noiaeeiinoe e aai o?ainoeieoiuo eoa?aoeee aeey ?aciuo iiiaae
a eaoaai?eyo oeoiiianeeo i?ino?ainoa.

Eeth/aaua neiaa: eiio?aaa?eaioiue ooieoi?, i?ino?ainoai iai?a?uaiuo
ioia?aaeaiee, eaoaai?ey oeoiiianeeo i?ino?ainoa, eaoaai?ey Eeaenee,
eaoaai?ey aeaaa?.

Levyts’ka V.S. Algebraic-topological properties of functors generated by
functional spaces.( Manuscript.

Thesis for a doctor’s degree by speciality 01.01.06 ( algebra and number
theory. ( Kyiv Taras Shevchenko university, Kyiv, 1999.

A notion of functorial topologization of the sets of continuous maps is
introduced and it is proved that there is no regular functorial
topologization with the Hilbert space in bounded-weak topology as one of
its values. A functorial topologization for the set of piecewise-linear
maps which transforms compact infinite polihedra to infinite dimensional
manifolds is constructed. A notion of functorial differentiable
structure on infinite dimensional manifolds modeled on topological
linear spaces is introduced and it is shown that there is no such a
structure on the space of continuous maps into a space that doesn’t have
a structure of differentiable (finite-dimensional) manifold.

The rest of results concerns properties of the contravariant functor Cp
of continuous functions in the topology of pointwise convergence acting
in the category TYCH of Tychonov spaces and continuous maps. Recall that
monad T=(T,(,() on a category C consist of an endofunctor T:C(C and
natural transformations (:1c(T (unity) and (: T2(T (multiplication) that
satisfy the conditions of associativity and two-side unity. The Kleisli
category CT of the monad T is the category whose class of objects
coinsides with that of C and whose morphisms are T-valued morphisms of C
with naturally defined operation. A criterion is established for
existence of extensions of contravariant functors onto the Kleisli
categories of monads. Namely, it is proved that there exists a bijective
equivalence between extensions of contravariant functor S onto the
category CT and natural transformations (: F(TFT satisfying the
conditions TF(((=(F and TF(((=(FT2(T(T((. This criterion is applied to
the problem of extension of the contravariant functor Cp onto the
Kleisli category of monad in the category of Tychonov spaces generated
by the functor Cp2 and also the hyperspace monad and its submonad of the
hyperspace of finite sets. In particular, it is proved that the
contravariant functor Cp of spaces of functions in the
pointwise-convergence topology, as well as all its (transfinite)
iterations, has an extension onto the Kleisli category of the monad (Cp2
, (, (). Sufficient conditios are given for existence of extensions of
compositions of contravariant functors onto the Kleisli categories.

A general criterion for existence of lifting of contravariant functors
onto the categories of T-algebras, which is based on existence of
natural transformations of special form, is established. This criterion
is applied to the contravariant functor Cp and the monad generated by
the functor Cp2 and it is proved that there exists a lifting of the
functor Cp on the category of T-algebras for the monad T= (Cp2 , (, ().

An analogous result is also proved for the contravariant functor Bp(()
of real-valued functions of Baire class ( in the topology of pointwise
convergence.

Key words: contravariant functor, space of continuous maps, category of
Tychonov spaces, Kleisli category, category of algebras.

A?oaiaaeuenueeee A.A. Oiiieiae/aneea i?ino?ainoaa ooieoeee. ( I.: IAO,
1989.

West J. Open problems in infinite-dimensional topology. ( In: Open
problems in topology (J. van Mill, G.M.Reed, Eds.) Elsevier, 1990.

-manifold // Trans. Amer. Math. Soc. 1975. V. 193. P. 249-256.

West J. Open problems in infinite-dimensional topology. ( In: Open
problems in topology (J. van Mill, G.M.Reed, Eds.) Elsevier, 1990.

Wyler O. Algebraic theory of continuous lattices // Lect. Notes Math.
Vol. 871, 1981.

Swirszcz T. Monadic functors and convexity Bull. Acad. Polon. Sci. Ser.
sci. math., astr. Et phys. ( 1974. ( V.22, N1. ( P.39-42.

Ca?e/iue I.I. Iiiaaea noia??anoe?aiey e a aeaaa?u // Oe?. iaoai.
aeo?iae. 1987. O.39, ?3. N.303-309.

?aaeoe O.I. Iiiaaea aeia?i?ino?ainoa aeeth/aiey e aa aeaaa?u // Oe?.
iaoai. ae. 1990. O. 42, N 6. N.806-811.

Arbib M., Manes E. Fuzzy machines in a category // Bull. Austral. Math.
Soc. 13, 1975, 169-210.

Vinarek J. On extensions of functors to the Kleisli category //
Comment. Math. Univ. Carolinae. 1977. V. 18, N2. P. 319-327.

Ca??/iee I.I. Oiiieia?y ooieoi??a ? iiiaae a eaoaai??? eiiiaeo?a. ( E.:
?NAeI, 1993.

Uaiei A.A. Ooieoi?u e ian/aoiua noaiaie eiiiaeoia // Oniaoe iaoai.
iaoe. ( 1981. ( O.36, ?3. ( N.3-62.

Zarichnyi M. Distributivity law for the normal triples in the category
of compacta and lifting of functors to the categories of algebras //
Comment. Math. Univ. Carolinae. 1991. V.32, N 4. P.785-790.

Uaiei A.A. Ooieoi?u e ian/aoiua noaiaie eiiiaeoia // Oniaoe iaoai.
iaoe. ( 1981. ( O.36, ?3. ( N.3-62.

*eaiaeaeca A.*. I i?iaeieaeaiee ii?iaeueiuo ooieoi?ia Aanoi. IAO. Na?.
Iaoai. Iao. ( 1984. ( ?6. ( N.23-26.

PAGE 4

Похожие записи