OA?E?ANUeEEE AeA?AEAAIEE OAOI?*IEE OI?AA?NEOAO ?AAe?IAEAEO?II?EE
IIIAEA?AIEI ??EIA A?OAE??AIA
OAeE 681.32:519.713
NO?OEOO?II-OOIEOe?IIAEUeI? AEAI?EOIE
I?IAEOOAAIIss I?IOeAAeO? Ae?AAIINOOAAIIss
OeEO?IAEO IIAeOE?A
05.13.12 – nenoaie aaoiiaoecaoe?? i?iaeooaaiiy
AAOI?AOA?AO
aeena?oaoe?? ia caeiaoooy iaoeiaiai nooiaiy
eaiaeeaeaoa oaoi?/ieo iaoe
Oa?e?a 1998
Aeena?oaoe??th ? ?oeiien
?iaioa aeeiiaia a Oa?e?anueeiio aea?aeaaiiio oaoi?/iiio oi?aa?neoao?
?aae?iaeaeo?ii?ee, I?i?noa?noai ina?oe Oe?a?ie
Iaoeiaee ea??aiee – aeieoi? oaoi?/ieo iaoe, i?ioani?
Oaoaiia Aieiaeeie? ?aaiiae/, Oa?e?anueeee aea?aeaaiee oaoi?/iee
oi?aa?neoao ?aae?iaeaeo?ii?ee, i?ioani?
Io?oe?ei? iiiiaioe: aeieoi? oaoi?/ieo iaoe, i?ioani?
Caaa?ee Aaiaaeie ?aaiiae/, Oa?e?anueea aea?aeaaia
aeaaeai?y cae?cie/iiai o?ainii?oo, caa?aeoth/ee eaoaae?ith;
aeieoi? oaoi?/ieo iaoe, i?ioani? Ooieaei Aioaeie Meeieaeiae/,
iaoeiaee oeaio? “Aa?ia?cian O?ai?ia Eiinaeo”, aee?aeoi?
I?ia?aeia onoaiiaa: Oa?e?anueeee aea?aeaaiee iie?oaoi?/iee
oi?aa?neoao, eaoaae?a aaoiiaoiee i oaeaiaoaiiee, I?i?noa?noai
ina?oe Oe?a?ie, i. Oa?e?a
Caoeno a?aeaoaeaoueny 26 eenoiiaaea 1998 ?ieo a 14 aiaeei ia can?aeaii?
niaoe?ae?ciaaii? a/aii? ?aaee Ae 64.052.02 i?e Oa?e?anueeiio
aea?aeaaiiio oaoi?/iiio oi?aa?neoaoo ?aae?iaeaeo?ii?ee ca aae?anith:
310726, i. Oa?e?a, i?. Eai?ia, 14.
C aeena?oaoe??th iiaeia iciaeiieoenue a a?ae?ioaoe? Oa?e?anueeiai
aea?aeaaiiai oaoi?/iiai oi?aa?neoaoo ?aae?iaeaeo?ii?ee ca aae?anith:
310726, i. Oa?e?a, i?. Eai?ia, 14.
Aaoi?aoa?ao ?ic?neaiee 22 aeiaoiy 1998 ?ieo
A/aiee nae?aoa?
niaoe?ae?ciaaii? a/aii? ?aaee Aacei?iaaeiee A.A.
CAAAEUeIA OA?AEOA?ENOEEA ?IAIOE tc “CAAAEUeIA OA?AEOA?ENOEEA ?IAIOE”
Aeooaeuei?noue oaie. ?icaeoie no/anieo nenoai aaoiiaoecaoe??
i?iaeooaaiiy a iaeano? ia/enethaaeueii? oaoi?ee aecia/a?oueny ia o?eueee
iiaooi?ie i?ia?aiii-aia?aoo?ieie caniaaie ?ic?iaee, aea ? ye?nii iiaei
i?aeo?aeii aei noai?aiiy aaoa?iaaiieo eiiiiiaio?a ia e?enoae? ii
HW/SW-oaoiieia?yo (nenoaie: COSIMA, POLIS, RASSP). Ia??ai? c
ia?iuoaaiiyi iiooaeiinoae aia?aoo?iiai caaacia/aiiy noaioe?e
aaoiiaoeciaaiiai i?iaeooaaiiy, iino?eiiai iiiaeaiiy ia?eo oi?aa?naeueieo
CAD-nenoai iiaeaeueoee ?icaeoie ciaoiaeyoue ? niaoe?ae?ciaai? i?ia?aii?
caniae (SOLAR, PTOLEMY, Speedsim/3), i???ioiaai? ia ?ica’ycaiiy
na?a?nieo caaea/, iia’ycaieo c ae?aaiinoe/iei ianeoaiaoaaiiyi ae?iao, ui
?ic?iaey?oueny. I?ia?aei? o??ie-i?iaeooaaeueieee (CADENCE, SINOPSYS,
MENTOR GRAPHICS) ? ae?iaieee (IBM, HP, INTEL, MOTOROLA) ia iathoue
?ica?aeiinoae c i?eaiaeo ?ica’ycaiiy i?iaeaie noai?aiiy ae?aaiinoe/iiai
caaacia/aiiy ia’?eoa ia noaae?? eiai i?iaeooaaiiy. I?ia?aiii-aia?aoo?ia
iaaei??i?noue, aecia/oaaia aaaaeaiiyi o ae??a n?aaenoa, cania?a
oanooaaiiy ? a?aeiiaeaiiy i?aoeacaeaoiino?, i?i?iaeueii aeiaaa?
aeiaeaoeiaeo aeo?ao o ?ici??? 25 %. Aea niiaeeaa/? i?aeoe/ii caaaeaee
aioia? iiea/oaaoe iineoae, ui caaacia/othoue ye?noue oa iaae?ei?noue
ia/enethaaeueii? oaoi?ee. I?ioa eiooe aaoiiaoecaoe?? i?iaeooaaiiy ua
aeaeae? a?ae aeineiiaeino? o /anoei? noai?aiiy ae?aaiinoe/iiai
caaacia/aiiy, ui i?aeoaa?aeaeo?oueny iaaenieith aeeaeiith
ae?aaiinooaaiiy aeaoaeo?a (o iani?aaii? ieaoe) i?e oanooaaii? no/anieo
oeeo?iaeo ae?ia?a, ui a?aeiiaeee.
Caaea/a i?aeaeuaiiy aeeaeie iiooeo aeaoaeo?a i?e i?i?i?caoe?? oei/aniaeo
? iaoa??aeueieo aeo?ao ?icaeyaea?oueny a eiiieaen? i?iaeai oaoi?/ii?
ae?aaiinoeee, yea caaaeyee ?ioaineaiiio ?icaeoeo caeia? i?ia?aeia i?noea
na?aae ooiaeaiaioaeueieo oaoi?/ieo iaoe. Oeueiio ni?eythoue i?aoe?
a/aieo: I.I.Ia?oiiaiei, A.I.?iiaieaae/, A.I.*eioe?n, Ae.A.Nia?ainueeee,
?.E.Oaeiaonueean, E.A.Aea?aoiiae/, A.I.Eaeya?i, ?.O.Ee?noi??i, ?.E.Oaa?,
TH.A.Iaeeoaiei, Neiaoeia TH.A., N.A.Oa?ooiia, A.A.Oa?aaiaaeca,
A.A.A?aiaeuenueeee, M.Breuer, A.Friedman, S.Thatte, J.Abraham,
M.Abramovici, A.Parker, D.Agwaral, J.Hayes, Y.Levendel, P.Menon,
S.Chappel, S.Szygenda, C.Robach, Y.Zorian, B.Courtois, T.Baker.
A?aoiaoth/e iaaeineiiae?noue cania?a NAI? i?e ?ica’ycaii? ie?aieo
caaea/, ?ic?iaieee noai?ththoue niaoe?ae?ciaai? i?ia?aii? i?iaeoeoe,
i???ioiaai? ia aoaeoeaia ?ica’ycaiiy ie?aieo ieoaiue a aeiiiaiaiiy aei
CAD-nenoaie, ui aeei?enoiao?oueny. Oaea iinoaiiaea coiiaeaia
aeinooii?noth oi?iao?a oaeeiaeo no?oeoo? nenoai i?iaeooaaiiy, ui
caaacia/o? ?o a?aee?eo?noue ? ?icoe?thaai?noue.
Oaeei /eiii, aeey eaae?o?eiaaiiai ei?enooaa/a CAD-nenoaie i?aeoe/ii
caaaeaee ?nio? iiaeeea?noue ?? aaeineiiaeaiiy ? aei?iaee.
Ca’ycie ?iaioe c iaoeiaeie i?ia?aiaie, ieaiaie, oaiaie. ?aae?caoe?y
?acoeueoao?a ?iaioe cae?enithaaeany a?aeiia?aeii aei eii?aeeiaoe?eieo
ieai?a IAI Oe?a?ie, I?i?noa?noaa ina?oe:
1.13.5.6. “?ic?iaeoe nenoaio aaoiiaoeciaaiiai i?iaeooaaiiy
ae?aaiinoe/iiai caaacia/aiiy i?e?ii?ioeani?ieo ?aae?iaeaeo?iiieo
i?eno?i?a”, eii?aeeiaoe?eiee ieai “E?aa?iaoeee” AI ONN? ? I?iaoca O?N?
ia 1986-1990 ?iee; “I?ia?aie iaoeiai-aeine?aeieo ?
i?aai?caoe?eii-iaoiaee/ieo ?ia?o ii ?ioi?iaoe?eii-iaoiaee/iiio
caaacia/aiith aeui? ina?oe a oiiaao iiiainooiai/aoinoe”, iaeac I?iaoca
Oe?a?ie ? 68 a?ae 31 ia?oe 1992 ?.; Aea?aeathaeaeaoieo IAe?: 234-1
“I?ia?aiii-?ioi?iaoe?eia, iaoiaee/ia caaacia/aiiy i?aeaioiaee
aaeaeaa?a”, 453-1 “Aeine?aeaeaiiy ? ?ic?iaea ia?niaeoeaieo niinia?a
i?iaeooaaiiy ? ae?aaiinoeea aeaeo?iiieo nenoai ?c canoinoaaiiyi ?o a
o/aiaiio i?ioean? ii eiii’thoa?i?e ?iaeaia???”.
Ia’?eo aeine?aeaeaiiy oeeo?ia? iiaeoe?, ui aeeth/athoue eiiiiiaioe
aenieiai nooiaiy ?ioaa?aoe??, c aeia?eueiith
no?oeoo?ii-ooieoe?iiaeueiith i?aai?caoe??th.
Iaoa aeena?oaoe?eii? ?iaioe i?iaeooaaiiy no?oeoo?ii-ooieoe?iiaeueieo
aeai?eoi?a ae?aaiinooaaiiy oeeo?iaeo iiaeoe?a aeey a?aeiiaeaiiy
i?aoeacaeaoiino? i?eno?i?a ia/enethaaeueii? oaoi?ee ia noaae?yo
ae?iaieoeoaa oa aenieoaoaoe??.
Aeey aeinyaiaiiy iinoaaeaii? iaoe a ?iaio? ae??oai? caaea/?:
– noai?aiiy ia’?aeiaieo iiaeaeae iacaeaaeieo eia?/ieo no?oeoo? a
?aieao ?aeeiiai eoa?/iiai iie?eooy (EI) ca aeiiiiiaith ?icoe?aiiai
aeoaa?oo eoa?/iiai /eneaiiy;
– ?ic?iaee aeai?eoio neio?iiiiai noaoe/iiai eia?/iiai iiaeaethaaiiy
aeaoaeo?a c iaoith aiae?co yeino? oano?a ? iiaoaeiae aaaaoicia/ieo
oaaeeoeue aeaiaioao iaoiaeaie cai?ioiiai aeine?aeaeaiiy ? iieiaeiiiai
?iciiae?eo iaeano?, ui i?aeic?th?oueny;
– ?ic?iaee no?oeoo?e oanoii?eaiaeiiai oeeo?iaiai i?eno?ith ? iaoiae?a
eiai iani?aaiinoae;
– i?iaeooaaiiy aacoiiaieo aeai?eoi?a ae?aaiinooaaiiy iani?aaiinoae ia
iniia? aeei?enoaiiy aaaaoicia/ieo oaaeeoeue iani?aaiinoae (AOI) ?
no?oeoo?e oeeo?iaiai i?eno?ith, ui aeicaiey? ia 30 % ciaioeoe iaeanoue
aeaoaeo?a, ui i?aeic?ththoueny;
– i?iaeooaaiiy oiiaieo aeai?eoi?a eiio?ieth ? iiooeo aeaoaeo?a,
i???ioiaaieo ia aeyaeaiiy iae?iaeaoaeo?a o ooieoe?iiaeueieo oa
eiino?oeoeaieo aacoiiaiiai ae?aaiinooaaiiy ?c caaeaiith aeicaieyth/ith
caeaoi?noth ia iniia? canoinoaaiiy AOI ? aaaaeaiiy aia?aoo?ii?
iaaei??iino?, ui caaacia/o? iaciiaeiaa neaioaaiiy ?noioieo aioo??oi?o
e?i?e.
I?e ?ica’ycaii? caaea/ aeei?enoai? iaoiaee aeine?aeaeaiue, caniiaai? ia
iaoaiaoe/ieo aia?aoao: aoeaai? aeaaa?e, oai??? iiiaeei, eoa?/iiai
/eneaiiy, oai??? aaoiiao?a ? a?ao?a, oaoi?/ii? ae?aaiinoeee, eia?/iiai
iiaeaethaaiiy.
Iaoeiao iiaecio aecia/athoue aeai?eoie aacoiiaiiai ? oiiaiiai
ae?aaiinooaaiiy, ni?iaeoiaai? ia iniia? aiae?co aaaaoicia/ieo oaaeeoeue
iani?aaiinoae ? no?oeoo?ii-ooieoe?iiaeueieo iiaeaeae oeeo?iaeo ia’?eo?a,
ui i?aeaeuothoue aeeaeio ae?aaiinooaaiiy iani?aaiinoae ? ciaiooth/?
aa?o?noue ?aae?caoe?? ae?aaiinoe/iiai aenia?eiaioo, yea aeeth/a?:
– iiaeaeue oeeo?iaeo no?oeoo? o aeaeyae? eoa?/iiai iie?eooy iacaeaaeieo
ooieoe?iiaeia aeey eia?/iiai aiae?co ? i?iaeooaaiiy aaaaoicia/ieo
oaaeeoeue iani?aaiinoae;
– aeai?eoi no?oeoo?iiai aiae?co aaaaoicia/ieo oaaeeoeue iani?aaiinoae
aeey aacoiiaiiai ae?aaiinooaaiiy eia?/ieo aeaoaeo?a;
– aeai?eoi oiiaiiai ae?aaiinooaaiiy iae?iaeaoaeoia iaoiaeii cai?ioiiai
aeine?aeaeaiiy c aeei?enoaiiyi i?ioeaaeo? no?oeoo?iiai ia’?aeiaiiy ?
ia?ae?aneaiiy;
– aeai?eoi oiiaiiai ae?aaiinooaaiiy ia iniia? aiae?co aaaaoicia/ieo
oaaeeoeue iani?aaiinoae ? no?oeoo?e oeeo?iaiai iiaeoey;
– SL-aeai?eoi ae?aaiinooaaiiy oanoii?eaeaoieo oeeo?iaeo no?oeoo? ia
iniia? iaciiaeiaiai neaioaaiiy oi/ie eiio?ieth.
O i?ioean? ?icaeyaeo caaaeaieo aeua ieoaiue io?eiai? i?aeoe/i?
?acoeueoaoe, ui iathoue cia/i?noue, ye? aeiinyoueny ia caoeno ?
ae??oaeuei? caaea/?:
– noai?aiiy i?ia?aiieo cania?a, ?aae?coth/ee aeai?eoie i?aeaioiaee ?
i?iaaaeaiiy ae?aaiinoe/iiai aenia?eiaioa c iaoith ciaioaiiy oei/aniaeo ?
iaoa??aeueieo aeo?ao a?aeiiaeaiiy i?aoeacaeaoiino? ia/enethaaeueiiai
i?eno?ith ia noaae?yo ae?iaieoeoaa ? aenieoaoaoe??;
– aa??oeeaoeey aeai?eoi?a ? iiaeaeae, ai?iaaaeaeaiiy i?aeoe/ieo
?acoeueoao?a, iaoiaeeee ? i?ia?aii? caniae a o/aiaee ? oaoiieia?/iee
i?ioean c iaoith aaoiiaoecaoe?? i?iaeooaaiiy eiiiiiaio?a ae?aaiinoe/iiai
caaacia/aiiy oeeo?iaeo iiaeoe?a;
– ai?iaaaeaeaiiy aeai?eoi?/ieo ?aae?caoe?e ia i?aei?e?inoaao ?
aeei?enoaiiy i?ia?aiieo cania?a a o/aiaiio i?ioean? oi?aa?neoao?a.
Aeinoia??i?noue ? iaa?oioiaai?noue oai?aoe/ieo ?acoeueoao?a
i?aeoaa?aeaeo?oueny ai?iaaaeaeaiiyi ? aenieoaoaoe??th i?ia?aiieo cania?a
iiaeaethaaiiy iani?aaiinoae oeeo?iaeo i?eno?i?a, i?iaeooaaiiy oiiaieo ?
aacoiiaieo aeai?eoi?a iiooeo aeaoaeo?a, ?aae?caoe??th iiaeaeueieo ?
iaoo?ieo ae?aaiinoe/ieo aenia?eiaio?a iaae oeeo?iaeie iiaeoeyie,
aeieacii ?yaeo oai?ai.
?acoeueoaoe ?iaioe o aeaeyae? i?ia?aiieo cania?a aeei?enoiaothoueny ia
i?aei?e?inoaao (AO “Oa?aia?ai?aiiio”, i?aeia?iaeiiai eiini?oe?oio
“Aia?aicaa?aaeaiiy”, AO IAe? ?A i.Oa?eiaa), a oaeiae a o/aiaiio i?ioean?
OOO?A, Oa?e?anueeiai a?enueeiaiai oi?aa?neoaoo, Oa?iii?euenueeiai
aea?aeaaiiai oi?aa?neoaoo.
Aei?iaoaaiiy ?acoeueoao?a aeine?aeaeaiue cae?enithaaeiny ia: 4th int.
Works of Workshop Mixed Design of Integrated Circuits and System”,
1997, Poznan, Poland; 3e i?aeia?iaeii? eiioa?aioe?? “Oai??y ? i?aeoeea
ia?aaea/?, i?eeiio ? ia?iaee ?ioi?iaoe??”, 1997, Ooaina; i?aeia?iaeii?
eiioa?aioe?? ii oaoi?/i?e ae?aaiinoeoe?, 1997, ?aaii-O?aie?anueea;
i?aeia?iaeii? eiioa?aioe?? “Ooieoe?iiaeueii-i???ioiaai? ia/enethaaeuei?
nenoaie”, 1993, Aeoooa; oeie?-nai?ia?? “I?e?ii?ioeanni?iea nenoaie
ca’yceo ? ea?oaaiiy ia cae?cie/iiio o?ainii?o?”, 1993, Aeoooa; ainueii?
i?aeia?iaeii? oeie?-nai?ia?? “Ia?niaeoeai? nenoaie ea?oaaiiy ia
cae?cie/iiio, i?iieneiaiio ? i?nueeiio o?ainii?o?”, 1995, Aeoooa;
i?aeaea?aeaaiiio iaoeiai-oaoi?/iiio nai?ia?? “Iaae?ei?noue,
a?aeiiaino?ee?noue ? i?iaeoeoeai?noue ?ioi?iaoe?eieo nenoai”, 1993,
Ooaina; iaoeiai-oaoi?/ieo eiioa?aioe?yo i?ioani?nueei-aeeeaaeaoeueeiai
neeaaeo OOO?A (1995-1998).
Ioae?eaoe??. ?acoeueoaoe iaoeiaeo aeine?aeaeaiue a?aeia?aaeai? a 13
ae?oeiaaieo iaoeiaeo i?aoeyo, a oiio /ene? 1 iiiia?ao?y.
No?oeoo?a ? ia’?i ?iaioe. Aeena?oaoe?y i?noeoue 191 noi??ieo, 24
iaethiee, 8 oaaeeoeue, ia’?aeiaieo a no?oeoo?o, ui aeeth/a?: anooi, 5
?icae?e?a, 25 i?ae?icae?e?a, aeniiaee, nienie aeei?enoaieo aeaea?ae c
132 iaeiaioaaiue, 3 aeiaeaoee.
CI????????IN????????O ?IAIOE tc “CI????????IN????????O ?IAIOE ”
Anooi i?noeoue iaa?oiooaaiiy aeooaeueiino? i?iaeaie, ui ae??oo?oueny,
oi?ioethaaiiy iaoe ? ia’?eoa caaea/ aeine?aeaeaiiy, noeoii?noue iaoeiaeo
?acoeueoao?a, ui aeiinyoueny ia caoeno, a?aeiiino? i?i ?o aei?iaoaaiiy ?
i?aeoe/io ?aae?caoe?th.
Ia?oee ?icae?e yaey? niaith aiae?c ?icaeoeo iniiaieo iaoeiaeo iai?yi?a
oaoi?/ii? ae?aaiinoeee, iia’ycaieo c noai?aiiyi iiaeaeae oeeo?iaeo
iaueaeoia; iiaeaethaaiiyi iani?aaiinoae ? ni?aaii? iiaaae?iee;
i?iaeooaaiiyi aeai?eoi?a ae?aaiinooaaiiy ? i?iaaaeaiiyi ae?aaiinoe/iiai
aenia?eiaioa. C o?ueio iniiaieo oi?i iieno aeene?aoieo ia’?eoia:
aiae?oe/ii?, a?ao?/ii?, oaaee/ii? ia?aaaaa a?aeaeaia aei inoaiiuei?, yea
c?o/ia aeey ni?eeiyooy ?ioi?iaoe?? ethaeeiith, oaoiieiae/ia aeey
iaoeiiiai eia?/iiai aiae?co, ine?eueee i?noeoue yai? ??oaiiy caaea/
i?yii? ? cai?ioii? ?iie?eaoe??. ?aeeiee iaaeie?e oaaeeoeue –
?ici??i?noue onoaa?oueny aaaaeaiiyi iaaei??iino? o aeoaa?o iieno noai?a
ci?iieo. Oa?aeoa?enoeee cania?a iiaeaethaaiiy iani?aaiinoae ? ni?aaii?
iiaaae?iee aecia/athoueny oi?iith iieno iiaeae? aeene?aoiiai ia’?eoa.
Aeey io?eiaiiy oaeaeeiae?th/i? nenoaie aeei?enoiaothoueny eiii?eyoeai?
(aiae?oe/i?) iiaeae?-i?ia?aie, i?ioean neeaaeaiiy yeeo ia i?aeaea?oueny
oi?iae?caoe??. Canoinoaaiiy ?ioa?i?aoaoeaieo oaaeeoeue ?noioii ciaioo?
oaeaeeiae?th aiae?co ao?aeieo ia?aa??yth/eo iine?aeiaiinoae, oiio ia
ei?enoue aeioe?eueiino? i?iaeooaaiiy aeai?eoi?a ?ioa?i?aoaoeaiiai
iiaeaethaaiiy iiaeii? i?aaenoaaeyoeny aaaii? a?aoiaioe. Caniae
i?aai?caoe?? ? i?iaaaeaiiy ae?aaiinoe/iiai aenia?eiaioa aeey ianeaieo
oeeo?iaeo i?eno?i?a (OeI), ye i?aaeei, noi?uathoue aacoiiai? ? oiiai?
(ciiaeia?) aeai?eoie iiooeo aeaoaeo?a c ia/eneaiiyi /a?aiai? oi/ee
eiio?ieth ia iniia? aiae?co ?acoeueoao?a iiia?aaei?o ia?aa??ie. I?e
oeueiio aeeaeia iiooeo aeaoaeo?a, /enei ciiaee?iaaiue ? oaeaeeiae?y ?
noia?a/eeaeie iieacieeaie nenoaie ae?aaiinooaaiiy. *anoeiaee aeica?e
caaaeaii? noia?a/iino? iiaeeea i?e aianaii? iaaei??iino? a ae?aaiinoe/ia
caaacia/aiiy oeeo?iaiai ae?iao, ye?e iiaea neoaeeoe: a?ao
ooieoe?iiaeueii-aaeueaai?/ieo ca’yce?a, oaaeeoey iani?aaiinoae,
iinoiiaeaethaaiiy ?acoeueoao?a aeaiaioa?ieo ia?aa??ie, eia?/iee aai
o?ce/iee ?ic?ea aeiaaeueieo cai?ioieo ca’yce?a.
Ae?oaee ?icae?e i?noeoue aeaiaioe aaeineiiaeaiiy iaoaiaoe/iiai aia?aoo
eoa?/iiai /eneaiiy, ye ?acoeueoaoo aaiethoe?? o?ueio a?eie i?iaeooaaiiy
ae?aaiinoe/ii? ?ioi?iaoe?? (AeI): oaaee/ieo niinia?a i?aaenoaaeaiiy
ooieoe?e i?ei?oea?a, aeai?eoi?a aaia?aoe?? oano?a, iaoiae?a
iiaeaethaaiiy iani?aaiinoae ? ni?aaii? iiaaae?iee neio?iiieo oeeo?iaeo
aaoiiao?a. Eiaeiee ?c caaaeaieo eiiiiiaio?a ia? oaiaeaioe?th aei
?icoe?aiiy aeoaa?oo iieno noai?a aaoiiaoieo ci?iieo a aeaio non?aei?o
oaeoao. Aeey aeai?eoi?a iiaeaethaaiiy – i?aeaeuaiiy aaeaeaaoiino?
aiae?co eia?/ieo noai?a, oaoiieiae/iinoue ia?iaee EI ia iniia?
i?ioeaaeo?e ia’?aeiaiiy ia?ae?anethaaiue, aeei?enoaiiy eoa?/iiai
iie?eooy ye iiaeaeue iani?aaiinoae i?e ioe?iee yeino? oano?a.
Eiioeaioe?y iiaeae? OeI aecia/a?oueny ooieoe?yie ia?aoiae?a, aeoiae?a
ocaaaeueiaiiai iiaeaeueiiai (OI-) aaoiiaoa W=
aea X, Y, Z – iiiaeeie ao?aeieo, aeo?aeieo, aioo??oi?o ci?iieo:
Z(t)=f[X(t-1), X(t), Y(t-1), Z(t-1)]; Y(t)=g[X(t-1), X(t), Z(t-1),
Y(t-1)],
i???ioiaaiiai ia ?icoe?aiiy i?inoi?o eiaeoaaiiy noai?a c iaoith
eiiiaeoiiai caieno oaaeeoe? ia?aoiae?a-aeoiae?a OeI ia oi?iao? ci?iieo
[X(t-1), Y(t-1)] o aeaeyae? eoa?/iiai iie?eooy:
C = {C1, C2, …, Ci, …, Cm},
aea Ci= {Ci1, Ci2, …, Cij, …, Cin}, Cij = {0, 1, X, Z}, X={0,1}.
Aeey caieno oaaeeoe? ia?aoiae?a-aeoiae?a OI-no?oeoo?e canoiniao?oueny
aeaio?aeiiaue oi?iao aaoiiaoieo ci?iieo i?eno?i?, yeee aeei?enoiao?
aeaioaeoiee aeoaa?o eoa?/iiai /eneaiiy:
A = {A0={G,T,K={G,T}}, A1= {{0, 1, X, Z}, X={0,1}}, Ax={Q=00, E=01,
H=10, J=11, O={Q,H}, I={E,J}, A={Q,E}, B={H,J}, S={Q,J}, P={E,H},
C={E,H,J}, F={Q,H,J}, L={Q,E,J}, V={Q,E,H}, Y={Q,E,H,J}, U}}.
I?ioeaaeo?a aaeoi?iiai ia’?aeiaiiy aaeoi?ieo ia?ae?anethaaiue
, (1)
(aea R aei aeeiiaiiy i?ioeaaeo?e i/euo?oueny: “j(Rj=AE); E – aaeoi?
ii/aoeiaeo oiia) ? iniiaith aeey ?ica’ycaiiy caaea/ aiae?co (i?yii? ?
cai?ioii? ?iieeeaoe??) a eoa?/iiio /eneaii?, yea i?aaenoaaey? aia?ao
oi?ioaaiiy ? ia?aoai?aiiy aaeoi?iiai aaiiao?e/iiai aoeaaiai i?inoi?o c
iao?eeith, ui caaea?oueny a?aenoaiith ii Oaii?iao i?ae aeaiia aaeoi?aie
Ni, Nj, ??aiei /eneo ionoeo ia?ae?anethaaiue
Cit Ct=1,n Cjt = AE, c aeeiiaiiyi oiia:
1) d(Ci,Cj)=0, yeui ? o?eueee yeui Ci =Cj;
2) d(Ci,Cj)=d(Cj,Ci);
3) d(Ci,Cj)+d(Cj,Cr) ? d(Ci,Cr), aeey aoaeue-yeeo {Ci,Cj,Cr}IC;
4) d(Ci,Cj) ? 0.
I?ioeaaeo?a (1) aeei?enoiao?oueny i?e iiaeaethaaii? ni?aaii? iiaaae?iee
? iani?aaiinoae OeI, aiae?c? aaaaoicia/ieo oaaeeoeue iani?aaiinoae a
aeai?eoiao aacoiiaiiai ae?aaiinooaaii? aeaoaeo?a, aecia/aii? iani?aaii?
iaeano? a oeeo?iaiio ia’?eo? i?e ciiaeiaiio iiooeo aeaoaeo?a.
Oai?aia. Aeei?enoaiiy neiaiea ii?iaeiuei? aace?/? Z a aeiiiaiaiiy aei
aeoaaeoo {0,1, X} iieno EI aeey aecia/aiiy eii?aeeiao iie?eooy ia
noia?a/eoue i?ioeaaeo?? ia’?aeiaiiy ia?ae?anethaaiue.
Aeniiaie 1. Neiaie Z a eoa? Ni aecia/a? ia?noioi?noue ao?aeii? NijX
?/aai aeo?aeii? NijY eii?aeeiaoe i?e oi?ioaaii? a?aeiioaiiy ao?aeieo ?
aeo?aeieo ci?iieo.
Aeniiaie 2. Neiaie Z iiaea aooe aeei?enoaiee aeey caieno nenoaie
iacaeaaeieo ooieoe?e: [Y1=g(X1); Y2=g(X2);…; Yj=g(Xj);…; Yk=g(Xk)],
[(“j,t=1, k; t?j)(Xj CXt=AE)], ia ia’?aeiai?e aace?/? ?noioieo ci?iieo:
(X1,X2,…,Xj,…,Xk, Y1,Y2,…,Yj,…,Yk) a oi?iao? iaei??? oaaeeoe?.
I?e oeueiio iiooaei?noue ia’?aeiaiiai EI aecia/a?oueny ae?aaeaiiyi
carda Y = (s+Ski) x Smi, aaea i=1,s.
Oaeei /eiii ioeueoeieeeaoeaia ioe?iea ?ici??iino? iie?eooy
cardm Y = (s+Ski) x Imi.
no?oeoo?ii iacaeaaeieo ooieoe?e caaaeyee Z noa? aaeaeeoeaiee.
Ii??aiyeueiee aiae?c ianya?a EI ooieoe?iiaeueii neeaaeieo oeeo?iaeo ?
i?e?ii?ioeani?ieo no?oeoo? aac oa i?e aeei?enoaii? neiaiea Z
i?aaenoaaeaiee ia ?en. 1.
Ooo aea i?aaenoaaeai? ooi/iai? i?ioeaaeo?e i?yii? ?iieeeaoe?? aeey
iiaeaethaaiiy iani?aaiinoae ? ni?aaii? iiaaae?iee oeeo?iaeo iiaeoe?a ?c
canoinoaaiiyi a?aoiai? iiaeae? oeeo?iai? no?oeoo?e, yea oaeiae
caaea?oueny o aeaeyae? eoa?/iiai iie?eooy. Oea aea? iiaeeea?noue
aeei?enoaoe ?ai?oa ?ic?iaeai? i?ioeaaeo?e aiae?co ? i?i?i?caoe??
eoa?/ieo iie?eoo?a aeey iiaeaethaaiiy a?aoiaeo no?oeoo?.
O?ao?e ?icae?e i?noeoue aeai?eoie i?iaeooaaiiy i?ioeaaeo?
ae?aaiinooaaiiy aeene?aoieo ia’?eo?a, ui aeei?enoiaothoue no?oeoo?o
ooieoe?iiaeueii aaeueaai?/ieo ca’yce?a aea?iioaioe?aeueieo e?i?e. Aiie
caniiaothoueny ia aiae?c? aaaaoicia/ieo oaaeeoeue iani?aaiinoae,
eii?aeeiaoe yei? caaeai? a aeoaa?o? {0,1,X={0,1},U=AE}, yee yaeythoueny
?acoeueoaoii ?iaioe cania?a iiaeaethaaiiy iaeeii/iuo eiinoaioieo
iani?aai?noae (IEI). Iiaa eaea i?i aeai?eoie iiaeaethaaiiy
iani?aaiinoae iaeeii/iiai eiinoaioiiai oeio D ia oano? O i?e caaeai?e
iiaeae? ni?aaii? iiaaae?iee F, ye? ae??oothoue caaea/o, aeaeyaeo:
F*(F,T,D)oF,T=Ei (g(T,F) C g(T,F,Di))=AE.
Aeey oeueiai cai?iiiiiaaiee iao?e/iee aeai?eoi aiae?co aeaoaeo?a, ui
aeei?enoiao? oai?aio. Iani?aai?noue Cij e?i?? i?iiioiaiiai aeaiaioo
(IA), aecia/oaaiee eii?aeeiaoith eoaa iie?eooy CiIC ia?aa??y?oueny
aea?eeiaei aaeoi?ii iiaeaethaaiiy A, yeui i?e eiai ia?aoei? c eoaii Ci
aeeiiothoueny oiiae:
$!j (CijCAj=AE) & $r (CYir CAr=AE) TH (Dj=Dj E Cij) & (Dr=Dr E CYir),
aea D = (D1, D2, …, Dj, …, Dm) – aaeoi? iani?aaiinoae, ui
ia?aa??ythoueny, NijI{0,1,X}. CYir – eii?aeeiaoa, ui niinoa??aa?oueny,
(j, r = 1, m).
Iiaeaethaaiiy e?aoieo aeaoaeo?a aeey IA caniiao?oueny ia aiae?c?
no?oeoo?e OeI, yea i?aaenoaaeaia o aeaeyae? iao?eoe?
aeinyaeiino?-noi?aeiino?. Aeey eiaeii? ae?aaiiaeueii? eii?aeeiaoe Mii,
a?aei?/aii? neiaieii “-”, i?aai?o/ a?ae ia? aoaeo?oueny aaeoi?-?yaeie
Mi, a yeiio cia/aiiy Mij= “-”, yeui e?i?y j ? ianooiiith aeey ci?iii? i.
Ce?aa a?ae Mii aiaeia?/ii a?aei?/a?oueny eii?aeeiaoa Mig, yeui ci?iia g
neoaeeoue aoiaeii aeey aeaiaioa c aeoiaeii i. Iao?eoey I = ¦¦Iij¦¦
oi?io?oueny i?ney ?aiaeoaaiiy e?i?e ? aeaiaio?a, ui ? iaiao?aeiei
ao?eaooii i?ai?ioeani?a. E?i??, a?aei?/ai? neiaieii “-” i?aai?o/ a?ae
Mii, yaeythoue niaith aace?/ ianooiiee?a, ce?aa iaeaeeae/eo
iiia?aaeiee?a, ui ? aoiaeaie aeey IA c iiia?ii i, caa?oo iiaia aace?/
iiia?aaeiee?a, cieco iiaia aace?/ iaeaeeae/eo ianooiiee?a aai aeoiaee
IA, ye? iathoue aoiaee c iiia?ii i. O i?ioean? iiaeaethaaiiy cai?noue
neiaiea “-” caiinyoueny {0,1,U}, ye? a?aeiia?aeathoue ?aeaioeo?eaoi?ai
IEI, ui ia?aa??ythoueny.
AOI, io?eiai? aiane?aeie iiaeaethaaiiy iani?aaiinoae, aeei?enoiaothoueny
aeey ?o no?oeoo?iiai aiae?co, aea aace?/? iaeeii/ieo D’ ? e?aoieo
eiinoaioieo aeaoaeo?a D’’ ia/eneththoueny ii ae?acao:
Aeai?eoi aiae?co AOI ?c canoinoaaiiyi no?oeoo?e ia’?eoa iae?eo, ui
iiaeaeth?oueny aieeao oaeoe/iiai noaio aeo?aeieo e?i?e, ui
niinoa??aathoueny, io?eiaieo aiane?aeie aeeiiaiiy ae?aaiinoe/iiai
aenia?eiaioa, a na?aaeiueiio ia 30% ciaioo? e?euee?noue aeaoaeo?a, ui
i?aeic?ththoueny, ui ?ethno?o?oueny ?en. 2. I?ioeaaeo?a i???ioiaaia ia
iiooe iaeeii/ieo ? e?aoieo eiinoaioieo aeaoaeo?a a oeeo?iaeo i?eno?iyo
aeia?eueii? no?oeoo?ii? ? ooieoe?iiaeueii? neeaaeiino? c i?eeiyoieie
ianyaaie ii/aoeiai? ae?aaiinoe/ii? ?ioi?iaoe?? aeey noai, ui i?noyoue
aei 500 e?i?e ? 256 aoiaei-aeoiae?a.
?icae?e 4 i?aaenoaaeaiee aeai?eoiaie oiiaiiai ae?aaiinooaaiiy. ye? i?e
iayaiino? aia?aoo?ii? iaaei??iino? iiaeooue aooe ia?aoai?ai? a
aacoiiai?, c aeiionoeiith aeicaieyth/ith caeaoi?noth. ?ioa?an
i?aaenoaaeythoue ia?aaeon?i aeai?eoie: 1) cai?ioiiai aeine?aeaeaiiy, 2)
iieiaeiiiai ?iciiae?eo, 3) SL-oanooaaiiy. Ia?oee caniiaaiee ia
canoinoaaii? neaiaoo?iiai aiae?co, eiee ca ?acoeueoaoii iioi/ii?
ia?aa??ee oi?io?oueny /a?aiaa oi/ea eiio?ieth:
Aeaa eia?/ieo aeoiaee ia?aa??ee caaeathoue aeueoa?iaoeai? oeyoe iiooeo
aeaoaeoo aai aecia/aiiy oaoi?/iiai noaio ia’?eoa:
aea S= D0 E D; D+ E D- = D; D+ C D- =AE, D0 – ni?aaiee oaoi?/iee noai; D
iaeanoue ?nioaaiiy aeaoaeo?a; D+ (D-) – iaeanoue iani?aaiinoae
aecia/oaaiee ia?aa??eith ?+ (?-). Ae?aaiinoe/ia iiaeaeue i?eno?ith
i?aaenoaaeaia a?aoii ooieoe?iiaeueii-aaeueaai?/ieo ca’yce?a eiioaeo?a
i?e?inoai ? oeeo?iaiai i?eno?ith G = {LijIL, FktrIF}, aea Lij – (aeoaa)
aaeueaai?/ia a?aeiioaiiy iaeiiai iioaioe?aeo i?ae eiioaeoaie ??cieo
eiino?oeoeaia aai i?ei?oea?a; Ftr – (aeoaa aai aeoae Fktr k-ai IA)
ooieoe?iiaeuei? a?aeiineie i?ae ao?aeiee t oa aeo?aeiee r ci?iii?. Aeey
iiaoaeiae aeai?eoio ae?aaiinooaaiiy iaiao?aei?: iiaiee ia?aa??yth/ee
oano a?aeiinii iaeeii/ieo eiinoaioieo iani?aaiinoae O, aoaeiii?
neaiaoo?e Syo an?o ciai?oi?o eiioaeo?a i?e?inoai ? oiiiaiai aeaiaioo
ci?ie (OAC), a?ao ooieoe?iiaeueii-aaeueaai?/ieo ca’yce?a FG oeeo?iaiai
iiaeoey:W = {G, T, Syo}. C iaoith iaaeeaeaiiy iiaeaeae iani?aaiinoae aei
?aaeueieo aaaaeai? oeie noai?a ia’?eoa:D={D0, D1, D2, D3, D4}, ni?aaiee
noai: D0 Ue (g(T,F) C g*(T,F,Di) = g(T,F)); D1 – a?aenooi?noue
aaeueaai?/iiai ca’yceo i?ae eiioaeoaie ??cieo i?e?inoai: D1 Ue [Syo
(Li) = Syen(Li) & Syo (Lj) ? Syen(Lj)]; D2 – iani?aai?noue ia aeoiae?
k-aeaiaioa aai ana?aaeei? iueiai: D2 Ue {“t[Syo (Fkt) = Syen(Fkt)]& &
$r[Syo (Fkr) ? Syen(Fkr)]}; D3 – a?aenooi?noue ca’yceo i?ae aoiaeii ?
oeiith eiinoaioe ?0, ?1: D3 Ue [Syo ({?0, ?1}) = Syen({?0, ?1}) & Syo
(Lj = {?0, ?1})? ? Syen(Lj)]; D4 – iani?aai?noue ciai?oiueiai ao?aeiiai
eiioaeoo IAeI:
D4 Ue [Syo (Li) ? Syen(Li) & Syo (Lj) ? Syen(Lj)].
Aeey ciaioaiiy /enea ciiaee?iaaiue ia ii/aoeiaiio aoai? ae?aaiinooaaiiy
aeeiio?oueny nooeoo?iee aiae?c noaie a?aeiinii aeaiaioa?ieo ia?aa??ie
ciai?oi?o aeoiae?a: O i?eiouaii? iayaiino? a noai? iaeeii/iiai
iae?iaeaoaeoa, ui oa?aeoa?ii aeey ia’?eoa a ia??iae aenieoaoaoe??,
iayai?noue iani?aaiino? iaiaaeo?oueny iaeanoth GC, ui io?eio?oueny
ia?aoeiii i?aenoai Gj, ui a?aeiinyoueny aei oeo aeoiae?a, ui
niinoa??aathoueny LjY, ia yeeo cao?eniaai? iaaaoeai? ia?aa??ee:
GC = “j {CGj Ue [Syo (LjY) ? Syen(LjY)]}, (j=1,m)
aea Gj – i?aea?ao ooieoe?iiaeueii-aaeueaai?/ieo ca’yce?a, ye? ?
iiia?aaeieeaie aeey e?i?? LjY; m – /enei ciai?oi?o aeoiae?a noaie. C
iaeano?, ui i?aeic?th?oueny GC iio??aii aeeeth/aoe e?i?? (i?aea?aoe),
ye? iathoue eia?/i? oeyoe aei aeoiae?a noaie, ui niinoa??aathoueny c
iiceoeaiei ?acoeueoaoii aei?iaoaaiiy:
G = GC \”j {EGj Ue [Syo (LjY) = Syen(LjY)]}, (j=1,m).
I?e aeiiouaii? iayaiino? e?aoieo aeaoaeo?a a noai? iaeanoue ?nioaaiiy
iani?aaiinoae ??aia ia’?aeiaiith i?aenoai, ui a?aeiinyoueny aei
iani?aaieo aeoiae?a, ca aeiyoeii ia’?aeiaiiy i?aenoai, eia?/ii
iia’ycaieo c ni?aaieie aeoiaeaie:
G = “j {EGj Ue [Syo (LjY) ? Syen(LjY)]}\”j {EGj Ue [Syo (LjY) =
Syen(LjY)]}.
Na?aaeiy ioe?iea a?aeiiniiai ciaioaiiy /enea ciiaee?iaaiue aeey
anoaiiaeaiiy ae?aaiico c aeei?enoaiiyi no?oeoo?iiai aiae?co aeey 9
ia?iaeaieo iiaeoe?a neeaaea? q= card(AIIa)/card(AIIn)=2,75.
Aeai?eoi iieiaeiiiai ?iciiae?eo a?eueo aoaeoeaiee aeey
iine?aeiaii-i???ioiaaieo no?oeoo?, ia a?aei?io a?ae iiia?aaeiueiai, ui
oyae?? aei ia?iaee ia?aeaeueieo. O eiai iniia? aiae?c iao?eoe?
aeinyaeiino? c iaoith aeai?o /a?aiai? eiio?ieueii? oi/ee, ui i?i?i?co?
ooieoe?th:
f = MAX|i [MIN (Ai, Bi)],
aea Ai = card(Mij)| j =1,n ; Ai = card(Mji)| j =1,n ; Mij – ?yaeie
iao?eoe? aeinyaeiino? M=¦¦Mij¦¦, yeee aecia/a? aaeoi?e iaeeie/ieo
eii?aeeiao, ui ?aeaioeo?eothoue ca’ycie (ooieoe?iiaeueii-aaeueaai?/io)
oi/ee eiio?ieth i, a?aeiia?aeii? iiia?o noiaa/eea, c aa?oeiith
i?aea?aoo, aecia/oaaiee ae?aaiiaeueiith eii?aeeiaoith Mii; Mji –
noiaa/ee iao?eoe? aeinyaeiino? M=¦¦Mij¦¦.
SL(Scan Line)-aeai?eoi ae?aaiinooaaiiy aeey oanoii?eaeaoii? no?oeoo?e c
aeei?enoaiiyi AOI ? a?aoa ooieoe?iiaeueii-aaeueaai?/ieo ca’yce?a
aeaeiioaioe?eieo e?i?e. Aia?aoo?ia iaaei??i?noue aecia/a?oueny
iayai?noth ioeueo?ieaeni?a, yeee ia? /enei ?ioi?iaoe?eieo aoiae?a,
??aiiai card(Xy)=(q-1)?, aea ?, q – /enei eiino?oeoeaia, aeoiae?a, ui
niinoa??aathoueny. E?euee?noue aae?anieo aoiae?a, ye? ? ciai?oi?ie
e?i?yie noaie, ui aeoiaeyoue ia ?ic’?i iaeeiaeiai card (Xs)= log2(q-1)?.
E??i oiai, noaia ia? aeo?ae Zs aeey neaioaaiiy noaio aioo??oi?o e?i?e.
Oanoii?eaeaoi?noue no?oeoo?e caaacia/o? oaoiieiae/i?noue aaia?oaaiiy
oano?a, yea caiaeeoueny aei iiaoaeiae ia?aa??yth/eo iine?aeiaiinoae aeey
ie?aieo ooieoe?iiaeueieo aeaiaio?a Fij aac iaiao?aeiino? o?ainii?ooaaiiy
ia?aa??yth/eo cae?aiinoae ia ciai?oi? ooieoe?iiaeuei? aeoiaee oeeo?iaiai
iiaeoey. I?e oeueiio i?iaeaia aeinoaaee oanoo-naaiaioa aei aoiae?a
ooieoe?iiaeueiiai aeaiaioa caeeoa?oueny aeooaeueiith ? ae??oo?oueny
a?aeiieie caniaaie. A?aoiaoth/e, ui e?euee?noue aeaiaio?a iaeeiaeiai pq,
aeiaaeeia oanoo a a??oiio aeiaaeeo aecia/a?oueny noiith aeiaaeei
oanoo-naaiaio?a aeey eiaeiiai ooieoe?iiaeueiiai aeaiaioa:
card(T) = Scard(Tij), i=1,q; j=1,p.
Iniiai? ioieoe SL-aeai?eoio i?aaenoaaeai? ieae/a.
1. Caaaeaiiy ii ea?oth/eo aoiaeao Xs ?aaeeio ia?aa??ee /a?aiaiai
ooieoe?iiaeueiiai iiaeoey Fij, i=1, q; j=1, ?.
2. Iiaea/a ia ooieoe?iiaeuei? aoiaee (X1,. .., Xq) oanoo-naaiaioa Tip,
i=1, q, c iaoith ia?aa??ee iani?aaiinoae caaeaiiai eeano.
3. Aecia/aiiy aenia?eiaioaeueii? ?aaeoe?? aeaiaioa Fij ii aeoiaeo Zs ?
?? ii??aiyiiy c aoaeiiieie cia/aiiyie c iiaeaeueoei oi?ioaaiiyi iao?eoe?
aenia?eiaioaeueii? ia?aa??ee:
Zr(Fij) A Tr (Fij) = Vr(Fij) [r =1,n(Fij)],
aea r – ia?aiao? oanoo-aaeoi?a, n(Fij) – aeiaaeeia oanoo-naaiaioa aeey
ia?aa??ee i?ei?oeaa n(Fij), Tr (Fij) ? Zr(Fij) – aoaeiii? ?
aenia?eiaioaeuei? ?aaeoe?? ia aeoiae? aeaiaioa (Fij), Vr(Fij) – aaeoi?
noiaiaoeue iao?eoe? aenia?eiaioaeueii? ia?aa??ee aeey aeoiaeo i?ei?oeaa
Fij.
4. Aeeiiaiiy ioieo?a 1-3 ?aae?ciao?oueny aeey an?o i?ei?oea?a oeeo?iaiai
iiaeoey, i?ney /iai cae?enith?oueny no?oeoo?iee aiae?c AOI ii io?eiai?e
iao?eoe? ania?eiaioaeueii? ia?aa??ee V c iaoith aecia/aiiy aace?/?
iaeeii/ieo aai e?aoieo eiinoaioieo iani?aaiinoae, eieae?ciaaieo a iaaeao
eiaeiiai eiino?oeoeaiiai aeaiaioa.
Ia?aaaaa i?ioeaaeo?e ae?aaiinooaaiiy oanoii?eaeaoiiai i?iaeoo iieyaa? a
aacoiiaiiio iiooeo iaeeii/ieo ? e?aoieo aeaoaeo?a, ui niioai?ththoue
ooieoe?iioaaiiy oeeo?iaiai iiaeoey, c aeicaieyth/ith caeaoi?noth,
aecia/oaaiee eiino?oeoeaiei aeaiaioii cai?ie.
?icae?e 5 iieno? ?ino?oiaioa??e nenoaie ae?aaiinoe/iiai ianeoaiaoaaiiy
oeeo?iaeo iiaeoe?a, ui aeeth/a? i?ia?aii? caniae i?iaeooaaiiy iiaeaeae
aeene?aoieo ia’?eoia ? ?o eiiiiiaio?a, iiaeaethaaiiy iani?aaiinoae ?
ni?aaii? iiaaae?iee, iiaoaeiae aeai?eoi?a iiooeo aeaoaeo?a. A?aei?oi?
iniaeeaino? eioo?a i?iaeooaaiiy: i???ioaoe?y ia ??oaiiy i?aeoe/ieo
caaea/ ae?aaiinoe/iiai ianeoaiaoaaiiy oeeo?iaeo ia’?eoia ia aoai? ?o
noai?aiiy; aeniea oaoiieiae/i?noue ?ic?iaeaieo aeai?eoi?a, aacia?a?aia
iiaeeo?eaoe?y ? iiiiaiaiiy iia?aoe?eieo ? ea?oth/eo cania?a. ?nioth/a
aa?n?y i?ia?aiiiai caaacia/aiiy noaiiaeoue 3000 ?yaee?a iia anaiaea?a ?
Ianeaeue, ia’?aeiaieo a 17 i?ia?aiieo iiaeoe?a. Iia?aoe?eia na?aaea IS
DOS ? WINDOWS. Iaiao?aei? ?ano?ne noaiaea?oi?.
AENIIAEE tc “AENIIAEE ”
?acoeueoaoii aeena?oaoe?eiie ?iaioe iio??aii aaaaeaoe ?ica’ycaiiy
caaea/? ciaioaiiy oei/aniaeo ? iaoa??aeueieo aeo?ao ae?aaiinooaaiiy
iani?aaiinoae oeeo?iaeo iiaeoe?a c aeicaieyth/ith caeaoi?noth aei
ooieoe?iiaeueiiai aeaiaioa aai eiino?oeoeaa caaaeyee ?ic?iaoe? ?
canoinoaaiith aeai?eoi?a oiiaiiai ? aacoiiaiiai ae?aaiinooaaiiy ia
iniia? iiaoaeiae aaaaoicia/ieo oaaeeoeue iani?aaiinoae, aeei?enoaiiy
no?oeoo?e aca?iiiia’ycaieo eiiiiiaio?a noaie, aaaaeaiiy iaaei??iino?.
Aeey aeinyaiaiiy ?acoeueoaoo a i?ioean? ?iaioe iaae aeena?oaoe??th aoee
ae??oai? iaoeia? ? i?aeoe/i? caaea/?:
– noai?aiiy iiaeae? oeeo?iaeo no?oeoo? o aeaeyae? iie?eooy iacaeaaeieo
ooieoe?iiae?a ia iniia? ?icoe?aiiai aeoaa?oa eoa?/iiai /eneaiiy aeey
eia?/iiai aiae?co ? i?iaeooaaiiy aaaaoicia/ieo oaaeeoeue iani?aaiinoae;
– ?ic?iaee aeai?eoio neio?iiiiai niaeo?eiiai aaaaoicia/iiai
iiaeaethaaiiy aeaoaeo?a c iaoith aiae?co yeino? oanoo ? iiaoaeiae
aaaaoicia/ieo oaaeeoeue iani?aaiinoae;
– i?iaeooaaiiy aacoiiaieo aeai?eoi?a ae?aaiinooaaiiy iani?aaiinoae ia
iniia? aeei?enoaiiy AOI ? no?oeoo?e oeeo?iaiai i?eno?ith, ui aeicaiey?
ia 30 % ciaioeoe iaeanoue aeaoaeo?a, ui i?aeic?ththoueny;
– i?iaeooaaiiy oiiaieo aeai?eoi?a eiio?ieth ? iiooeo aeaoaeo?a,
i???ioiaaieo ia aeyaeaiiy iae?iaeaoaeo?a a ooieoe?iiaeueieo ?
eiino?oeoeaieo aeaiaioao iaoiaeaie cai?ioiiai aeine?aeaeaiiy ?
iieiaeiiiai ?iciiae?eo iaeano?, ui i?aeic?th?oueny;
– ?ic?iaee no?oeoo?e oanoii?eaeaoiiai oeeo?iaiai i?eno?ith ? iaoiae?a
eiai aacoiiaiiai ae?aaiinooaaiiy ?c caaeaiith aeicaieyth/ith caeaoi?noth
ia iniia? canoinoaaiiy AOI ? aaaaeaiiy aia?aoo?ii? iaaei??iino?, ui
caaacia/o? iaciiaeiaa neaioaaiiy ?noioieo aioo??oi?o e?i?e;
– noai?aiiy i?ia?aiieo cania?a, ?aae?coth/ee caaaeai? aeai?eoie
i?aeaioiaee ? i?iaaaeaiiy ae?aaiinoe/iiai aenia?eiaioa c iaoith
ciaioaiiy oei/aniaeo ? iaoa??aeueieo aeo?ao a?aeiiaeaiiy
i?aoeacaeaoiino? ia/enethaaeueiiai i?eno?ith ia noaae?yo ae?iaieoeoaa ?
aenieoaoaoe??;
– aa??oeeaoe?y aeai?eoi?a ? iiaeaeae, ai?iaaaeaeaiiy i?aeoe/ieo
?acoeueoao?a, iaoiaeeee ? i?ia?aii? caniae a o/aiaee ? oaoiieia?/iee
i?ioean c iaoith aaoiiaoecaoe?? i?iaeooaaiiy eiiiiiaio?a ae?aaiinoe/iiai
caaacia/aiiy oeeo?iaeo iiaeoe?a.
NIENIE IIOAEI?EIAAIEO I??AOeUe CA OAIITH AeENA?OAOeI? tc “NIENIE
IIOAEI?EIAAIEO I??AOeUe CA OAIITH AeENA?OAOeI?”
1. Eiio?ieue e aeeaaiinoeea au/eneeoaeueiuo ono?ienoa e nenoai / Oaoaiia
A.E., E?eaoey A.O., ?uniaaiue A.I., Iiiaea?aiei E.A./ Iiae ?aae. A.E.
Oaoaiiaa/ Oa?ueeia: OAO, 1997.– 304 n.
2. Oaoaiia A.E., Iiiaea?aiei E.A., Aaae?aoue ?.A. I?iaeoe?iaaiea
iioeiece?iaaiiuo aeai?eoiia aeeaaiinoe?iaaiey ono?ienoa au/eneeoaeueiie
oaoieee // ?aaeeiyeaeo?iieea e eioi?iaoeea.– 1997.– ? 1.– N. 88-91.
3. Oaoaiia A.E., Iiiaea?aiei E.A., Aa?aaeiay I.A. Aeeaaiinoe?iaaiea
iaeeii/iuo e e?aoiuo iaeni?aaiinoae a oeeo?iauo ono?ienoaao// ANO e
i?eai?u aaoiiaoeee.– O.: OOO?Y.– 1997.– Aui. 104.– N. 17-28.
4. Oaoaiia A.E., Oaiueei A.A., Aaae?aoue ?.A., Iiiaea?aiei E.A.
No?oeoo?iue aiaeec iiiaicia/iuo oaaeeoe iaeni?aaiinoae aeey
aeeaaiinoe?iaaiey oeeo?iauo ono?ienoa// ANO e i?eai?u aaoiiaoeee.– O.:
OOO?Y.– 1998.– Aui. 107.– N. 12-17.
5. Oaoaiia A.E., E?eaoey A.O., Iiiaea?aiei E.A. Eoae/aneia en/eneaiea
aeey aiaeeca aaoiiaoia// Eioi?iaoeea, eeaa?iaoeea e au/eneeoaeueiay
oaoieea.– Aeiiaoee: AeiiAO, 1997.– Aui. 1.– N. 159-164.
6. Oaoaiia A.E., Iiiaea?aiei E.A., Aa?aaeiay I.A. Aeaoooaeoiia
eoae/aneia en/eneaiea. II. Aiaeec iiaeaeae oeeo?iauo ono?ienoa// ANO e
i?eai?u aaoiiaoeee.– O.: OOO?Y.– 1997.– Aui. 106.– N. 93-105.
7. Hahanov V., Krivoulja G., Monzharenko I. Two-Frames Cubical Calculus
for Modeling and Simulation of Digital Circuits. 4-th int. Works of
Workshop “Mixed Design of Integrated Circuits and System”. Poznan,
Poland. 12-14 June 1997. P. 195-199.
8. Oaoaiia A.E., Iiiaea?aiei E.A., Eiaaeaiei N.I. I?eiaiaiea oaaeeoe
iaeni?aaiinoae aeey aeeaaiinoe?iaaiey au/eneeoaeueiuo ono?ienoa. Oac.
aeiee. 3 iaaeaeoia?. eiio. “Oai?ey e i?aeoeea ia?aaea/e, i?eaia e
ia?aaioee eioi?iaoeee”. 16-18 naio.– 1997.– OOO?Y Oa?ueeia – Ooaina. N.
336-337.
9. Oaoaiia A.E., E?eaoey A.O., Iiiaea?aiei E.A. No?oeoo?iue aiaeec
iiiaicia/iuo oaaeeoe iaeni?aaiinoae aeey aeeaaiinoe?iaaiey oeeo?iauo
ono?ienoa. Oac. aeiee. iaaeaeoia?. eiio.– 1997.– Eaaii-O?aieiane.–
N.76-77.
10. Oaoaiia A.E., Iiiaea?aiei E.A., Iaeneiiaa I.A. Ciiaeiaia
aeeaaiinoe?iaaiea e aiaeec oaaeeoeu eni?aaiiai iiaaaeaiey. Oac. aeiee.
iaaeaeoia?iaei. iao/i. -oaoi. eiio. “Ooieoeeiiaeueii-i?eaioe?iaaiiua
au/eneeoaeueiua nenoaiu”.– Eeaa, Oa?ueeia, Aeoooa.– O.: OIE.–1993.–
N.33-34.
11. Oaoaiia A.E., Iiiaea?aiei E.A. Aeeaaiinoe?iaaiea iaeni?aaiinoae ii
?aaeoeeyi auoiaeia iauaeoa.–Oac. aeiee. oeieu-naieia?a.– Aeoooa.– 1993.–
O.:OEEO.–1993.– N. 39-40.
12. Oaoaiia A.E., Iiiaea?aiei E.A. Eiaaeaa A.A. Nenoaia eiiiuethoa?iiai
iiaeaee?iaaiey oeeo?iauo e II-no?oeoo?. Iaoa?eaeu 8-e Iaaeaeoia?iaeiie
oeieu naieia?a “Ia?niaeoeaiua nenoaiu oi?aaeaiey ia aeaeaciiaei?iaeiii,
i?iiuoeaiiii e ai?iaeneii o?ainii?oa.– Aeoooa.–1995.– O:
Oa?AAAEO.–1995.– N. 26.
13. Oaoaiia A.E., Aaiaeeeia A.A., Iiiaea?aiei E.A. Aeeaaiinoe?iaaiea
oaoie/aneiai ninoiyiey iaueaeoa ii ?aaeoeeyi aai auoiaeia. Oac. aeiee.
iaaeainoae. iao/i.–oaoi. naieia?a “Iaaeaaeiinoue, ioeacionoie/eainoue e
i?iecaiaeeoaeueiinoue eioi?iaoeeiiiuo nenoai”.– Ooaina.– E?aniiaea?: IOI
?YN.–1993.–N.38.
Iniaenoee aianie. O ioae?eaoe?yo, iaienaieo a ni?aaaoi?noa?, aeena?oaioo
iaeaaeaoue: eoa?/i? iiaeae? iieno no?oeoo? iacaeaaeieo ooieoe?e,
aeai?eoi iiaeaethaaiiy iani?aaiinoae, oiiai? ? aacoiiai? aeai?eoie
eiio?ieth ? iiooeo aeaoaeo?a, i?ioeaaeo?e ae?aaiinooaaiiy
oanoii?eaeaoieo no?oeoo? c aaaaeaiiyi iaaei??iino?.
AIIOAOeI?ss tc “AIIOAOeI?ss ”
Iiiaea?aiei I.A. No?oeoo?ii-ooieoe?iiaeuei? aeai?eoie i?iaeooaaiiy
i?ioeaaeo? ae?aaiinooaaiiy oeeo?iaeo iiaeoe?a. ?oeiien.
Aeena?oaoe?y ia caeiaoooy iaoeiaiai nooiaiy eaiaeeaeaoa oaoi?/ieo iaoe
ii niaoe?aeueiino? 05.13.12 – nenoaie aaoiiaoecaoe?? i?iaeooaaiiy. –
Oa?e?anueeee aea?aeaaiee oaoi?/iee oi?aa?neoao ?aae?iaeaeo?ii?ee,
Oa?e?a, 1998.
Aeena?oaoe?y i?enay/aia ieoaiiyi i?iaeooaaiiy aeai?eoi?a aiae?co
oeeo?iaeo no?oeoo? aeey iiaoaeiae aacoiiaieo ? oiiaieo i?ioeaaeo?
ae?aaiinooaaiiy. Aeey i?i?i?caoe?? iaoa??aeueieo ? oei/aniaeo aeo?ao
a?aeiiaeaiiy i?aoeacaeaoiino? oeeo?iaeo ia’?eo?a ni?eueii
aeei?enoiaothoueny aeai?eoie aacoiiaiiai ? oiiaiiai ae?aaiinooaaiiy
iani?aaiinoae. Aaciaith ?ioi?iaoe??th ? aaaaoicia/i? oaaeeoe?
iani?aaiinoae, no?oeoo?a ia’?eoa ae?aaiinooaaiiy, aoaeiii? neaiaoo?e.
Cai?iiiiiaai? aeai?eoie ?aae?ciaai? o aeaeyae? i?ia?aiieo cania?a
i?iaeooaaiiy aaaaoicia/ieo oaaeeoeue iani?aaiinoae, oiiaieo ? aacoiiaieo
i?ioeaaeo? ae?aaiinooaaiiy eiinoaioieo iani?aaiinoae ? iae?iaeaoaeo?a.
Eeth/ia? neiaa: aaoiiaoeciaaia i?iaeooaaiiy, eia?/ia iiaeaethaaiiy,
aeai?eoi ae?aaiinooaaiiy, oeeo?iaee iiaeoeue.
AIIIOAOeEss tc “AIIIOAOeEss”
Iiiaea?aiei E.A. No?oeoo?ii-ooieoeeiiaeueiua aeai?eoiu i?iaeoe?iaaiey
i?ioeaaeo? aeeaaiinoe?iaaiey oeeo?iauo iiaeoeae.– ?oeiienue.
Aeenna?oaoeey ia nieneaiea o/aiie noaiaie eaiaeeaeaoa oaoie/aneeo iaoe
ii niaoeeaeueiinoe 05.13.12 – nenoaiu aaoiiaoecaoeee i?iaeoe?iaaiey.–
Oa?ueeianeee ainoaea?noaaiiue oaoie/aneee oieaa?neoao ?aaeeiyeaeo?iieee,
Oa?ueeia, 1998.
Aeenna?oaoeey iinayuaia aii?inai i?iaeoe?iaaiey aeai?eoiia aiaeeca
oeeo?iauo no?oeoo? aeey iino?iaiey aaconeiaiuo e oneiaiuo i?ioeaaeo?
aeeaaiinoe?iaaiey. Aeey ieieiecaoeee iaoa?eaeueiuo e a?aiaiiuo cao?ao
ainnoaiiaeaiey ?aaioiniiniaiinoe oeeo?iauo iauaeoia niaianoii
eniieuecothony aeai?eoiu aaconeiaiiai e oneiaiiai aeeaaiinoe?iaaiey
iaeni?aaiinoae. A ea/anoaa enoiaeiie eioi?iaoeee neoaeao iiiaicia/iua
oaaeeoeu iaeni?aaiinoae, no?oeoo?a iauaeoa aeeaaiinoe?iaaiey, yoaeiiiua
neaiaoo?u. I?aaeeiaeaiiua aeai?eoiu ?aaeeciaaiu a aeaea i?ia?aiiiuo
n?aaenoa i?iaeoe?iaaiey iiiaicia/iuo oaaeeoe iaeni?aaiinoae, oneiaiuo e
aaconeiaiuo i?ioeaaeo? aeeaaiinoe?iaaiey eiinoaioiuo iaeni?aaiinoae e
iae?iaeaoaeoia.
Eeth/aaua neiaa: aaoiiaoece?iaaiiia i?iaeoe?iaaiea, eiae/aneia
iiaeaee?iaaiea, aeai?eoi aeeaaiinoe?iaaiey, oeeo?iaie iiaeoeue.
ABSTRACT tc “ABSTRACT”
Ionzharenko I.V. Structurally-functional designing algorithms for
diagnosing procedures of digital units. – Manuscript.
Dissertation on competition learned candidate degree of technical
sciences on speciality 05.13.12 – designing automation system.– Kharkov
state technical radio electronics university, Kharkov, 1998.
Dissertation sacred to analysis algorithms designing questions of
digital structures for construction of absolute and conditional
procedures of diagnosing. For minimization of finantial and temporal
expenditures of capacity reneval of digital objects jointly use
algorithms of absolute and conditional diagnosing of disrepairs. As
initial information serve ambiguons disrepairs tables, diagnosing
object structure, standard signature. The Offered algorithms realized in
appearance of program designing funds of ambiguons disrepairs tables,
conditional and absolute procedures of diagnosing of constant disrepairs
and macrofaults.
Key words: automated designing, logical design, diagnosing algorithm,
digital units.
Нашли опечатку? Выделите и нажмите CTRL+Enter